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Abstract 

Mie-Grüneisen type equations of state (EOS) are widely used to describe the thermodynamics of 

solids, liquids, and gases in a variety of physics problems, including shock wave dynamics in 

condensed materials and the thermodynamic behavior of dense gases generated by detonation waves. 

The Jones-Wilkins-Lee (JWL), Cochran-Chan, and original Mie-Grüneisen EOSs are relevant 

examples. However, these EOSs present several major difficulties. First, their range of validity is 

limited because these EOSs are fitted to a reference curve and tolerate only small deviations from that 

curve. The second difficulty lies in the complexity of the mathematical formulations, affecting the 

efficiency of pressure relaxation solvers. These two difficulties give rise to a third. Under extreme 

flow conditions, computational failures are quite common. Methods for “extending” the equations of 

state are often used to continue the computations. For example, below a certain arbitrary density, the 

JWL EOS is sometimes extended to the ideal-gas EOS. A fundamentally new method is presented in 

this work. It consists of using the much simpler Noble-Abel-stiffened-gas EOS as a predictor, to close 

the corresponding flow model. A thermodynamic relaxation step follows the prediction step. The 

solution is projected onto the target EOS, in this case the Mie-Grüneisen EOS, with the help of 

additional transport equations. Therefore, the flow model is an extended version, much more efficient 

for numerical resolution. This method solves the three problems above by extending the validity 

domain of the thermodynamic formulation, making the relaxation solvers much faster, and 

dramatically increasing the robustness of computations. 
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1. Introduction 

Mie-Grüneisen (MG) (Mie, 1903 and Grüneisen 1912) equations of state (EOS) are widely used to 

describe the thermodynamics of solids, liquids, and gases in a variety of problems in physics, such as 

the propagation of shock waves in condensed materials (Marsh, 1980, Bushman et al., 2004, Levashov 

et al., 2004) and mixtures of them (Saurel et al., 2007a). When dealing with the detonation of 

condensed explosives, the Jones-Wilkins-Lee (JWL) EOS (Lee et al., 1968) seems to be the most 

popular formulation for engineering computations. In this area, many thermochemical codes have been 

developed, such as Cheetah (Fried et al., 1998) or EXPLO5 (Sućeska, 1999) to compute the JWL 

parameters from the isentrope emerging from the Chapman-Jouguet (CJ) point. The JWL EOS is then 

used in most computer codes under the Mie-Grüneisen form. See for example Souers et al. (2000), 

Chinnayya et al. (2004), Saurel et al. (2018), and many others. MG-type EOSs are also widely used for 

impact computations (Povarnitsyn et al., 2006, Lomonosov and Fortova, 2017). However, the MG 

EOS and its variants, such as the JWL EOS, present fundamental difficulties. 

First, their range of validity is limited. This is due to the fact that these EOSs are fitted to a reference 

curve and tolerate only small deviations from it. When dealing with shock physics, the MG EOS and 

the Cochran and Chan (1979) variant, as well as reduced versions such as the stiffened-gas EOS and 

the Noble-Abel-stiffened-gas EOS (Le Métayer and Saurel, 2016) are fitted to the Hugoniot curve. 

This means that an isentropic expansion can be problematic when the amplitude of this process is 

large. When dealing with multiphase formulations, the phases are present everywhere and all kinds of 

thermodynamic transformations occur, such as compression, expansion, heating, and cooling. 

Therefore, domain restrictions are problematic. These restrictions appear as negative square sound 

speed, negative temperature, which are consequences of the lack of convexity of the formulation. 

Details about convexity can be found in Godunov et al. (1976), Menikoff and Plohr (1989), Neron and 

Saurel (2022). To overcome these difficulties, MG formulations are expanded to low density using a 

stiffened-gas formulation. Sometimes it is also necessary to perform a similar expansion at high 

density. The literature is lacking in this respect as these expansions involve a certain degree of 

arbitrariness. Some details can be found in Miller and Puckett (1996) and Arienti et al. (2004). The 

same difficulty arises with the JWL EOS. It is fitted to the isentrope emerging from the CJ point. But 

expansions far from this isentrope can occur, as well as heating and even re-shock. Sophisticated MG-

type EOSs that are valid over a wide range of thermodynamic states exist, see for example Lomonosov 

and Fortova (2017), Belkheeva (2022). However, calibration of such EOSs requires extensive 

knowledge of the material properties, which may not always be available. 

JWL and MG EOSs are generally convex, well-posed, and accurate in their domain of validity and 

fitting. However, they can hardly be used in computer codes, single-phase, multiphase, and diffuse-

interface without extensions of their domain of validity and convexity. Such extensions introduce 

complexity in the formulation and are sometimes inefficient under extreme flow conditions. These 

problems are exacerbated in the context of multi-material and multiphase computations when pressure 

relaxation solvers are used (see for instance Le Métayer et al., 2013). For example, pressure relaxation 

solvers are required in the context of hyperbolic multiphase models (Baer and Nunziato, 1986) and 

diffuse-interface methods (Saurel and Abgrall, 1999a, Kapila et al., 2001, Udaykumar et al., 2003, 

Saurel and Pantano, 2018). As the various thermodynamic formulas are heavy, most of the 

computational time is spent in relaxation solvers and various thermodynamic subroutines. These two 

difficulties give rise to a third, which is related to the robustness of the computations. Under extreme 

flow conditions, computational failures are quite common. In this case, various methods are used to 

extend the EOS in order to continue the computations. Sometimes, temperature relaxation is used in 

addition to pressure relaxation, resulting in entropy production and computational stabilization.  
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In the present work, a fundamentally new method is introduced. It consists of the computation of the 

considered flow model, single-phase or multiphase, with its Mie-Grüneisen type EOS, by means of a 

method using a predictor EOS (PEOS) and a target EOS (TEOS). The solution is obtained after a two-

step procedure. It is reminiscent of the method of Coquel and Perthame (1998) but differs at several 

levels.  

In the first step, the Noble-Abel-stiffened-gas (NASG) EOS (Le Métayer and Saurel, 2016) is used. 

Indeed, it is the simplest formulation that includes all molecular effects present in matter: agitation, 

long-range attraction, and short-range repulsion. Its formal mathematical expression is also 

convenient, since it consists of a reduction of all existing EOSs, such as MG, as well as cubic 

formulations, such as the van der Waals (1873) one. In the first step, the flow model is extended with 

additional transport equations for the various parameters or functions of the PEOS and TEOS. 

The first step is followed by a thermodynamic relaxation step, during which the solution is projected 

onto the target EOS, in this case the MG EOS. At this stage, the transported variables are reset so that 

both the PEOS and the TEOS are locally perfectly merged. Thus, the flow model is slightly larger due 

to the presence of additional transport equations, but its numerical resolution is much more efficient. 

Indeed, during the hyperbolic evolution, in the Riemann solver, and in the pressure relaxation solver, 

the simple and explicit PEOS (NASG) is used. 

This method solves the three above-mentioned problems by extending the validity domain of the 

thermodynamic formulation, by making the relaxation solvers significantly faster, and by dramatically 

increasing the robustness of computations. With the present method, the MG EOS is neither extended, 

nor used outside its validity range. If a convexity problem occurs, the thermodynamic reset is 

deactivated, and the computations continue with the last PEOS parameters. These parameters are still 

transported but are not reset to the non-convex TEOS surface. The computations become very robust 

due to the large convexity domain of PEOS. Depending on the flow model and the flow conditions, 

speedups between 30% and 50% are observed with the new method compared to the conventional one.  

The paper is organized as follows. The (target) TEOSs, consisting of specific forms of the MG EOS 

are reported in Section 2. They consist of the Cochran and Chan (1979) EOS and the JWL (Lee et al., 

1968) EOS. The (predictor) PEOS (NASG) is recalled in Section 3. The extended flow model is 

presented in Section 4 in the context of single-phase compressible flows. It consists of the Euler 

equations supplemented by some transport equations. Computational examples are shown and 

discussed in Section 5. The method is extended to non-equilibrium Baer-and-Nunziato type (1986) and 

diffuse-interface (Saurel et al., 2009) multiphase flow models in Sections 6 and 7. A multi-D 

computational example is then presented. It consists of an underwater explosion situation involving 

the motion of material interfaces under extreme flow conditions. Conclusions are given in Section 8.  

 

2. Target EOS (TEOS) 

The target EOS (TEOS) refers to the thermodynamic model targeted by the relaxation method, 

whose objective is to reproduce the solutions of the considered flow model computed with the TEOS 

thermodynamic closure. In the present context, TEOS is of MG form. Two different MG-form TEOSs 

are considered as examples. First, the Cochran and Chan (1979) EOS (CC) is studied because its 

formulation is simpler. Then, the more sophisticated JWL EOS (Lee et al., 1968) is considered. The 

general formulation of MG (2.1) and the specific functions of CC (2.3) and JWL (2.4) are summarized 

below, 
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The notations are conventional. The variables P, v, e, T, and c represent the pressure, the specific 

volume, the specific internal energy, the temperature, and the sound speed respectively. The 

parameters   and 
vC  represent the Grüneisen coefficient and the specific heat at constant volume 

respectively. The latter two are considered as constant parameters in this paper. The   and 
vC  

coefficients are defined as, 
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Functions kP  and ke  are specific to the MG-type EOS under consideration. For the CC EOS, the 

various functions denoted by the subscript “CC” read, 
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where 
1A , 2A , 1E , and 

2E  are empirically adjusted parameters depending on the studied material. 

Subscript “ref” indicates the reference state data used to calibrate these parameters. 

   For the JWL EOS the various functions used in (2.1) are denoted by the subscript “JWL” and read,  
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where A , B , C , 1R , 2R , and k  are fitted parameters depending on the considered material. The 

subscript “ref” and “CJ” denote the reference state and Chapman-Jouguet state respectively, which are 

used to fit the parameters. 

The EOS (2.1) is therefore the target EOS to be solved. However, the complexity of the TEOS 

formulations, both with CC and even more with JWL, is the main motivation for the relaxation 

approach developed in the present work. Moreover, these EOSs have a limited domain of validity, 

which makes the whole computation difficult. The target EOS is therefore treated with a simpler 

dummy EOS, typically of the NASG form. The dummy EOS acts as a predictor for the 

thermodynamic variables with the aim of recovering the state associated with the target EOS. 

 

3. Predictor EOS (PEOS) 

The Predictor EOS (PEOS) refers to the simplified thermodynamic model whose goal is to recover 

the thermodynamic state of the target model, at least locally at a given thermodynamic point. The 

Noble-Abel-stiffened-gas (NASG) EOS is chosen because it is the simplest formulation that includes 

the three molecular forces present in matter (agitation, short-range repulsion, and long-range 

attraction). More sophisticated EOS can be expressed in the NASG form, with more or less complex 

functions instead of the constants present in this EOS. Its formal expression is therefore convenient as 

a local reduced formulation for all other existing analytical formulations. Moreover, the NASG EOS is 

convex over a wide range of thermodynamic states. The various formulations of NASG are 

summarized in (3.1), 
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The thermodynamic parameters marked with a star * represent the parameters that are to be adapted to 

match the TEOS formulation. In the NASG (PEOS) relations (3.1), *

vC  remains the specific heat at 

constant volume. The parameter *b  represents the covolume, modeling short-range repulsive effects. 

The parameter *P  represents attractive ones, present only in condensed matter, and *q  is the 

formation (or reference) internal energy. Finally, the specific gas constant ( ) ** *

vR 1 C=  −  with *  the 

adiabatic coefficient, is associated with thermal agitation and results from the thermodynamic relation 

of Mayer, as detailed in Appendix A. 

The NASG EOS (3.1) is convex as long as *P P −  thus guaranteeing a quite large range of 

convexity. The adjustment of these parameters is done later through functions depending on the 

internal energy and the specific volume in order to match the various thermodynamic variables 

between TEOS and PEOS.  

Comparing TEOS (2.1) and PEOS (3.1), these EOSs appear quite different. To determine the 

thermodynamic state corresponding to the target TEOS, the flow model is modified. Additional 

equations are added for each of the thermodynamic parameters of PEOS. These equations address 

transport as well as relaxation of the thermodynamic parameters marked with a star.  It means that 

each equation added for the PEOS parameters address transport of the corresponding parameter in the 

flow and a relaxation term is present in each equation to locally recover the TEOS predictions. After 

transport, instantaneous thermodynamic relaxation is achieved, so that TEOS and PEOS are locally 

merged. 

4. Hyperbolic formulation with relaxation 

The method is presented in this section in the single-phase context of the 1D Euler equations of gas 

dynamics. Five additional transport equations are added, one for each of the thermodynamic 

parameters of the PEOS: *b , *P , *R , *

vC , and *q . These transport equations are written under 

conservative form, with the help of mass conservation, 
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System (4.1-4.2) forms the extended flow model with the transport-relaxation equations (4.2). Its 

thermodynamic closure is achieved with (3.1). The notations are conventional. Most of the notations 

have already been defined with (2.1). In addition, 
1 1

,  u,  and E e u²
v 2

 = = +  denote the density, the 

velocity, and the total energy respectively. The thermodynamic parameters with a star symbol are used 

in PEOS (3.1). Each equation in (4.2) contains a relaxation term. The various functions ( )b v,e , 

( )P v,e , ( )R v,e , ( )vC v,e , and ( )q v,e  are constructed in such a way that TEOS and PEOS merge 

in the limit 0 .+→  As examined in Section 4.4, instantaneous relaxation ( 0+→ ) is done only when 

the convexity conditions are fulfilled. Otherwise, no relaxation is done, meaning that the relaxation 

terms of (4.2) are removed, i.e., .→ + The relaxation rate   is defined in these two limits only, 

meaning that no finite rate relaxation is used. Stiff relaxation of the thermodynamic parameters 

guarantees that the extended System (4.1-4.2) tends to the target model which is System (4.1) 

thermodynamically closed with TEOS.  

System (4.1-4.2) corresponds to an extended hyperbolic system with stiff relaxation. It appears more 

convenient for numerical resolution than the original Euler equations with the target EOS (MG in the 

article). It is more convenient at computational level, faster, and the prolongation outside the range of 

convexity is automatic, maintaining hyperbolicity of the formulation. This property is lost with the 

Euler equations and TEOS when convexity conditions are violated.  

Extended hyperbolic systems are now widely used in various areas of physics and numerics. Relevant 

references are for example Chen et al. (1994), Levermore (1996), Coquel and Perthame (1998), Saurel 

and Abgrall (1999b), Kapila et al. (2001), Saurel et al. (2009), Lund (2012). 

System (4.1-4.2) is built in order that it is hyperbolic with wave speeds u , u c+ , and u c− , where the 

sound speed c is given by (3.1). Asymptotic considerations, given later in Section 4.3, show that this 

extended system matches the target system, with TEOS. System (4.1-4.2) is solved in the absence of 

relaxation terms during a time step with the user’s favorite scheme. In the present paper the Godunov 

(1959) method is used with the HLLC (Harten-Lax-van Leer-Contact) Riemann solver of Toro et al. 

(1994) for the computation of the hyperbolic step (computation of System (4.1-4.2) without source 

terms). After the hyperbolic step, stiff relaxation is achieved to merge TEOS and PEOS.  

   Some remarks are necessary first. In the present context, since TEOS is of MG type, covolume 

effects are absent: *b 0= . This means that the first equation of (4.2) is removed. This is not true when 

considering cubic EOSs such as those of van der Waals type. However, non-convex cubic EOSs pose 

additional difficulties, such as modeling phase transitions, which are beyond the scope of the present 
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work. Second, the thermodynamic parameters *R and *

vC  are linked through the relation of Mayer as 

detailed in Appendix A, 

*
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R
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
             (4.3) 

This means that another equation can be removed from System (4.2). Thus, only 3 coefficients remain 

to be determined: *R , *P ,  and *q . 

These coefficients are determined to satisfy the three conditions: 
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Note that the specific volume v  and internal energy e  are provided by the flow model (System (4.1) 

in this section), regardless of the equation of state. It is also worth mentioning that the equality of the 

square sound speeds involves the equality of the partial derivatives, 
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where s  is the specific entropy. In addition, through Relation (4.3), the following partial derivatives 

are equated as well,  
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as detailed in Appendix A. This means that the same Grüneisen coefficient is used in both PEOS and 

TEOS. 

With the help of the PEOS equations (3.1), the solution to System (4.4) reads, 
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Alternatively, introducing the TEOS expressions (2.1) in (4.7), the following relations appear, 
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Relations (4.8) are used to reset the three thermodynamic parameters **R , P ,  and *q before the next 

time step, i.e., before the next hyperbolic-transport step. 
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4.1. Sub-characteristic condition 

Another remark is worth mentioning. As System (4.1-4.2) is a non-equilibrium flow model when 

PEOS is used instead of TEOS, the sub-characteristic condition of Liu (1987) must be satisfied. Here 

it corresponds to, 

2 2

PEOS TEOSc c .   (4.9) 

This condition is automatically satisfied during the relaxation step by the last equation of (4.4).  

 

4.2. Summary 

In the frame of the present contribution, as the target EOS is of MG type, where covolume effects 

are absent, and as parameters *R  and *

vC  are linked through Relation (4.3), the flow model consists of 

(4.1) complemented by:  

( )( )

( )( )

( )( )

( )( )

* *

*
*

*

*

*

*
*

P v P ,

u
R v,e R ,

u
q v q ,

with when the convexity relations see Sec tion 4.4 4.15 are fulfilled, otherwise

P P u

t x

R R

t x

q q

t x

0 .

 
 

+


+ = −




+ = −


 + = −



  

  

  

  

  

  

→ → +

(4.10) 

The EOS used during the hyperbolic step is (3.1) and the relaxation step is done with Relations (4.8). 

 

4.3. Asymptotic considerations 

Another remark may help to analyze this relaxation method. For the sake of simplicity let us 

consider the first equation of System (4.10) as P  is dependent on a single variable: ( )P v . The 

lagrangian derivative is denoted as,  

u
t x

d

dt
=
 

 
+ . 

As P  depends on the specific volume, its evolution over time is given by, 

dP dP dv

dt dv dt

 = .           (4.11) 

The first equation of System (4.10) is then combined with the mass equation of System (4.1). The 

following result is readily obtained: 

( )* * *P v P
u .

P P

t x

    −
=


+

  
         (4.12) 

Let us now consider a first-order Taylor expansion of ( )P v  around the initial specific volume 0v : 

( ) ( ) ( )0 0

dP
P v P v v v .

dv


  + −  

Inserting this result in (4.12) yields,  
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( ) ( )0

*
* * 0

dP
P v v v P

dvu .
P P

t x


 

 
+





+ − −

=
 

       (4.13) 

As ( )*

0P P v  from the preceding relaxation step, (4.13) becomes, 

( )* *
0

.
P P

t x

v vdP
u

dv

  
=



−


+




         (4.14) 

In the asymptotic limit when 0+→ , (4.14) tends to (4.11). As (4.11) is an exact formula from TEOS, 

the relaxation method based on (4.14) and PEOS tends to the exact formula (4.11), provided that 

0 ,+→  which is the case for numerical methods where wave propagation is considered. Stiff 

relaxation ( 0+→ ) is done when the convexity conditions are fulfilled, as examined hereafter.  

 

4.4. Relaxation switch 

When the relaxation step (4.8) is achieved, asymptotic considerations show that the flow model with 

PEOS tends to the solutions of TEOS. The numerical experiments reported in the next section confirm 

this observation. However, TEOS is sometimes inappropriate, in the sense that its domain of validity is 

limited. Such a situation is quite common in multiphase and diffuse-interface computations as the 

fluids are present everywhere, sometimes in very small proportions, and subjected to variations 

dictated by another phase. For example, a solid phase may be present as a continuum medium in a 

very small volume fraction, in an expanding fluid in large proportions. The normal behavior of the 

solid phase in such an expansion is not to remain continuous. In fact, such material does not exist in 

reality, but the computation and the theoretical formulation must manage its presence, in vanishing 

proportions. 

   When the TEOS is used outside its domain of validity, convexity problems arise. Details about 

convexity and various forms for convexity expressions are available in Godunov et al. (1976), 

Menikoff and Plohr (1989), Chiapolino and Saurel (2018), Neron and Saurel (2022). Using the method 

described in Appendix B, the following convexity criteria are derived for the MG EOS, 

( )

( )

( )

k
k

k

k
k

v dP
P P v ,

dv

P P v ,

dP
P P v v .

dv

1


 +





  +


 +

                                              (4.15) 

The convexity criteria (4.15) are valid for any MG formulation that satisfies ( ) k
k

de
P v

dv
= − . If the 

criteria (4.15) are not satisfied, the TEOS is out of its convexity range, which usually leads to incorrect 

predictions and possible computational failure (negative square sound speed or negative temperature). 

As mentioned in the Introduction, to avoid such difficulties, MG EOSs are sometimes extended with 

another EOS, such as the stiffened-gas EOS, with a certain degree of arbitrariness. 

   It should be noted that algebraic manipulations of the MG relations (2.1) result in, 
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( )
( )

( )

( )

2

k
k

k

k

v

T

k v

v dP c
P P v ,

dv v

C T
P P v ,

v

CdP 1
P P v v ,

v

1

v

1

d


− − =




− =

 

− − =

 +

=


 +



                                                                                                   (4.16) 

where 
PT

1

v

v


 =  and T

T

1

v

v

P
= −




 are the thermal expansion coefficient and the isothermal 

compressibility coefficient respectively. As the 
v

P
v

e


 =


and 

v

v

e
C

T


=


 parameters are necessarily 

positive, the comparison between (4.15) and (4.16) reveals that the first condition of the convexity 

criteria (4.15) ensures a positive square sound speed 2c .  The second condition ensures a positive 

temperature T.  The third condition ensures a positive thermal expansion coefficient   and a positive 

isothermal compressibility coefficient T .  The convexity criteria (4.15) consequently describe a 

thermodynamically stable equation of state (Menikoff, 2015). 

With the proposed method, if the convexity criteria (4.15) are violated, the thermodynamic reset is 

switched off and the computations continue with the last PEOS parameters. These parameters are still 

transported by the flow but are not relaxed to the non-convex TEOS state. This means that the 

relaxation time in (4.10) now tends to infinity: →+ . Since the convexity domain of the PEOS 

(NASG), is much larger, the computations become very robust. This method automatically extends the 

MG EOS and guarantees continuity of all thermodynamic variables.  

With the full relaxation method now available, various test problems are considered to assess the 

method, from 1D single-phase to 2D multiphase flows. The following three main points are addressed: 

- Ability to catch the target thermodynamic state, 

- Improved robustness,  

- Computational time saving. 

 

5. Single phase 1D results 

In this section, the relaxation method is assessed on several test problems. First, the thermodynamic 

relaxation method described in Section 4 for the Euler equations is investigated using shock-tube and 

double-expansion test problems. The presentation discusses the ability of the predictor EOS to recover 

the results of the target EOS and its capability to compute a local convex state. This enables the 

computation with PEOS to continue when the conventional method (TEOS) fails. Second, the 

thermodynamic relaxation method is investigated in the frame of underwater explosions with a 

lagrangian scheme, further demonstrating the ability and robustness of the thermodynamic relaxation 

method compared to the conventional method based on TEOS. 

 

5.1. Shock-tube tests 

 The flow model (4.1) extended by the transport-relaxation equations (4.10) is solved numerically 

with a Godunov-type method using the HLLC approximate Riemann solver to compute the intercell 

flux (Toro et al., 1994, Toro, 1999). After the hyperbolic step, the MG convexity conditions (4.15) are 

checked in each cell with the updated density and pressure. If the convexity criteria are fulfilled, the 
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thermodynamic parameters are instantaneously relaxed with relations (4.8). Otherwise, the relaxation 

step is omitted, and the thermodynamic parameters are only transported. 

All computations are first-order in both space and time, to avoid any additional numerical 

component. The time step is computed with a CFL (Courant-Friedrichs-Lewy) criterion of 0.8. The 

computational domain is 1-m long and is spatially resolved with 500 cells. For each test case, the 

results obtained with the relaxation method (denoted as PEOS) are compared with the predictions 

obtained with the conventional method (denoted as TEOS) that uses the MG EOS to provide 

thermodynamic closure to System (4.1). The main objective is to ensure that both methods give the 

same results, i.e., that the relaxation method is able to reproduce the results of the target model as 

expected. Shock-tube tests are considered to assess the method when discontinuities are present. 

Double-expansion tests are also considered to examine the relaxation method in the limit where the 

conventional method fails, when TEOS falls outside its validity range. Both CC and JWL formulations 

are considered. The corresponding thermodynamic parameters are summarized in Table I. 

 

CC parameters 

(nitromethane) 

JWL parameters 

(TNT) 

  1.190   0.290 

( )vC J / kg / K  2000 ( )vC J / kg / K  2399 

( )
1A GPa  0.819181 ( )A GPa  492.6 

( )
2A GPa  1.50835 ( )B GPa  5.950 

1E  4.52969 ( )C GPa  0.924 

2E  1.42144 1R  4.730 

( )3

ref kg / m  1134 2R  1.060 

( )
refT K  300 ( )3

ref kg / m  1605 

( )refe J / kg  0 ( )
CJD m / s  6737 

  ( )
CJP GPa  18.18 

 ( )
CJT K  3712 

Table I. Cochran-Chan (CC) parameters for liquid nitromethane and Jones-Wilkins-Lee (JWL) 

parameters for TNT detonation products taken from Saurel et al. (2007b) and Massoni et al. (2006) 

respectively.  

All tests are initialized at a given pressure and a given density. When the relaxation method is used, 

the thermodynamic parameters of Equations (4.10) are initialized with Relations (4.8). To do this, the 

specific energy is required. Initially, the specific energy of the predictor model is assumed to be equal 

to the one of the target model and is computed with the MG formulation ( )TEOSe v,P  through 

Relations (2.1). 

First, a shock-tube test with the CC EOS taken from Saurel et al. (2007b) is considered. The left 

chamber is initially set at high pressure P 200000 bars=  and 32000 kg / m = . The right chamber is 

set at atmospheric pressure P 1 bar=  and 31134 kg / m = . The initial discontinuity is located at 0.6 

m. The computed results for both the conventional method (TEOS) and the relaxation method (PEOS) 

are shown in Figure 1 at time 70 µs.  
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Figure 1. Single-phase shock-tube test case with the CC EOS. Dashed gray lines represent computed 

results with the conventional method (TEOS), and black lines correspond to the relaxation method 

(PEOS). Thin black lines represent the initial conditions. Results are shown at time 70 µs. The results 

of both methods are merged. The present relaxation method perfectly matches the target EOS. 

The results obtained with the relaxation method using PEOS are in perfect agreement with those 

obtained with the conventional method using TEOS. At this stage, the new method seems to work 

nicely and as expected for the CC formulation. The computed PEOS parameters *R , *

vC , *P ,  and *q  

are shown in Figure 2. 
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Figure 2. Single-phase shock-tube test case with the CC EOS. The thermodynamic parameters
*R , 

*

vC  

*P ,  and 
*q  of the predictor EOS used to recover the target EOS solution in Figure 1, are shown. 

Thick lines represent the computed parameters at time 70 µs. The initial parameters are depicted in thin 

lines. Parameter 
*b  is not plotted since its value is set to zero. 

The profile of the PEOS parameters follows the trend of the thermodynamic variables of Figure 1, 

specifically the trend of density. These parameters have no physical signification as the physical 

thermodynamic model under consideration is the TEOS. For example, the specific heat *

vC  does not 

correspond to the real specific heat of the material 
vC ,  which is defined for the MG EOS. 

A similar shock-tube test is considered for the JWL formulation. The left chamber is set at high 

pressure P 200000 bars=  and 32200 kg / m = . The right chamber is set at atmospheric pressure 

P 1 bar=  and 31000 kg / m = . The computed results are shown in Figure 3 at time 70 µs.  
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Figure 3. Single-phase shock-tube test case with the JWL EOS. Dashed gray lines represent computed 

results with the conventional method (TEOS), and black lines correspond to the relaxation method 

(PEOS). Thin black lines represent the initial conditions. Results are shown at time 70 µs. The results 

of both methods are merged. The present relaxation method recovers the target EOS results. 

Again, the relaxation method computes the same results as the conventional method, with the JWL 

EOS. Since the relaxation method captures the results of the TEOS, the next step is to investigate the 

method in the limit where the conventional method fails.  

 

5.2. Double-expansion tests 

Double-expansion tests are now considered to assess the robustness of the relaxation method against 

conventional computations. In such tests, the fluid expands, and the density decreases significantly. 

The thermodynamic state eventually leaves the validity domain of the MG EOS, as indicated by the 

convexity criteria (4.15). Double expansion is reminiscent of vacuum formation, which often occurs 

under extreme multiphase flow situations such as underwater explosions. Vacuum treatment is one of 

the main sources of numerical difficulties with vanishing phases coming out of their range of validity. 

The main goal with double-expansion tests is to study the behavior of the relaxion method in situations 

where the conventional method fails. If the MG convexity criteria are violated, the relaxation of the 

thermodynamic parameters with the PEOS is switched off. The computations continue with the NASG 

EOS, which has a much larger range of validity.  

The first double-expansion test is achieved with the CC formulation. The domain is initially set at 

P 1=  bar and 31134 kg / m =  with an expansion velocity of 200  m/s. The initial discontinuity is 

located at 0.5 m. Both methods successfully compute the corresponding flow. Results are shown in 

Figure 4 at time 200 µs. 
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Figure 4. Single-phase double-expansion test case at velocity 200  m/s for the CC EOS. Dashed gray 

lines represent computed results with the conventional method (TEOS), and black lines correspond to 

the relaxation method (PEOS). Thin black lines represent the initial conditions. Results are shown at 

time 200 µs. Again, the results for both methods are merged. The present relaxation method perfectly 

recovers the TEOS results. 

The conclusion is the same as for the shock-tube tests, the results are merged with both methods. 

The oscillation in the middle of the domain is called overheating, which is a numerical artifact due to 

the conservative formulation of the Euler equations. See for instance Toro (1995), Cocchi et al. (1998) 

for more details. This artefact is present in all double-expansion tests and has no serious consequences 

for the present illustrations. 

The next test is identical except that the initial velocity is superior: 331 m/s. In this case, the 

conventional method fails at a certain point because a negative square sound speed appears. The 

relaxation method runs until the end. The results are shown in Figure 5. Each curve shows the solution 

every 50 µs and the final time is 200 µs. 

     

     

     

     

     

    

 

   

              

 
  
 
 
  

 

     

    
    
             

   

    

    

    

    

    

              
 
  
 
 
  

  
     

    
    
             

    

    

    

   

 

  

   

   

   

              

 
  
 

  
 

     

    
    
             

   

   

   

   

   

   

   

              

 
  
 

 

     

    
    
             

   

   

   

   

   

   

   

   

   

              

 
  
 
 
  

 
 

     

    
    
             

    

    

    

    

    

    

    

    

              

 
  
 

  
 

     

    
    
             



17 

 

 

Figure 5. Single-phase double-expansion test case at velocity 331  m/s for the CC EOS. Dashed gray 

lines represent computed results with the conventional method (TEOS), and black lines correspond to 

the relaxation method (PEOS). Thin black lines represent the initial conditions. Each curve shows 

computed results every 50 µs until 200 µs. The conventional method fails after time 100 µs while the 

relaxation method runs until the end. In the middle of the domain, the MG convexity criteria are 

violated. Consequently, the PEOS parameters are not reset, preventing computational failure.  

In this test case, the conventional method with CC EOS fails between times 100 µs and 150 µs 

because the square sound speed becomes negative in the center of the domain. The first two curves in 

each graph show that the two methods are identical at the beginning of the computation. Then, when 

sound speed goes below 800 m/s, which corresponds approximately to a density of 900 kg/m3, the 

predictions between the two methods diverge. This corresponds to the moment when the convexity 

criteria (4.15) are no longer satisfied. Consequently, the thermodynamic parameters of the predictor 

EOS are no longer relaxed. As time evolves, the PEOS gradually deviates from the target EOS. The 

deviations here are mainly visible in the sound speed. When the conventional method fails, the new 

method with relaxation turned off continues, with computed results in correct agreement with those 

obtained at earlier times. As the solution is self-similar, it shows that the switched-off relaxation is 

accurate. Indeed, plateau values at the end of expansion waves are correctly computed.  

A similar double-expansion test is conducted with the JWL formulation. The domain is initially set 

at  P 1=  bar and 3500 kg / m =  with an expansion velocity of 261 m/s. The results are shown in 

Figure 6. Each curve corresponds to the solution every 100 µs and the final time is 400 µs. 
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Figure 6. Single-phase double-expansion test case at velocity 261  m/s with the JWL EOS. Dashed 

gray lines represent computed results with the conventional method (TEOS), and black lines 

correspond to the relaxation method (PEOS). Thin black lines represent the initial conditions. Each 

curve corresponds to results every 100 µs until 400 µs. The conventional method fails while the 

relaxation method runs until the end. In the middle of the domain, the MG convexity criteria are not 

fulfilled. Consequently, the PEOS parameters are not reset, preventing computational failure. 

The conventional method fails between times 200 µs and 300 µs, again because the square sound 

speed becomes negative in the middle of the domain. Overall, the conclusions are similar to the 

previous test case with CC. Below 360 kg/m3, the convexity criteria are no longer met, and the 

relaxation step is bypassed. This allows the predictor EOS to complete the computation. 

It is worth mentioning that these computational initial data are particularly severe for the JWL EOS. 

Indeed, this EOS models the thermodynamics of a gas phase. But because of the expansion process, 

the pressure becomes negative. This is obviously not physical for a gas. But it can happen with the 

JWL formulation as it was fitted in a restricted domain of thermodynamic conditions. And such an 

anomaly can also occur in multiphase flow solvers, when the gas phase is present in minor 

proportions. Therefore, the new method is helpful for such extreme thermodynamic conditions.  

 

5.3. 1D spherical underwater explosion 

In this section, a lagrangian scheme is used to compute an underwater explosion test. 1D lagrangian 

schemes enable straightforward computation of material interfaces separating two pure media. Only a 

single fluid is present within each computational cell, and mixture cells are prevented. The solution is 

updated using the following 1D numerical scheme, 
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( )n n lag,* lag,*

i i i 1/2 i

n 1

i

lag,*

1/2n 1

i

*

*

1
U ,

0

with U and F P .u

u

x U t F F
x

E

+ −

+

+
 =  

  
  

= =   
   
  





 −  −






         (5.1) 

In Relation (5.1), indexes i  and i 1/ 2 denote the center of the numerical cell i  and its corresponding 

boundaries respectively. The space step for the numerical cell i  is  
i 1/2 i 1/2i xx x+ − = −  and the time 

step is t.  Indexes n  and n 1+  denote two consecutive time steps. The positions of the numerical cell 

boundaries are updated as n 1 n *

i 1/2 i 1/2 i 1/2 t.x x u+

  + =   In this work, the intercell pressure *P  and velocity 

*u  are computed using the HLL (Harten, Lax, and van Leer, 1983) approximation and the wave speed 

estimates of Davis (1988). Further details about lagrangian methods may be found in Maire and 

Nkonga (2009). 

A 1D spherical underwater explosion is examined in this section. A sphere containing PBXN-109 

detonation products is initially settled in water. The initial radius of the sphere is 11.3 cm. The PBXN-

109 detonation products are described by the JWL EOS. The thermodynamic relaxation method does 

not pose any particular difficulty in the lagrangian framework and follows the same lines as introduced 

in Section 4 for the Euler formulation. The JWL equation of state is of MG type, so there are no 

covolume effects and only three coefficients, *R , *P ,  and *q , are necessary for the thermodynamic 

relaxation method. Liquid water is described by the NASG EOS that reduces to the stiffened-gas (SG) 

EOS. The various EOS parameters are reported in Table II. 

 

SG parameters  

(liquid water) 

JWL parameters  

(PBXN-109 detonation products) 

( )R J / kg / K  2603.34   0.226 

( )vC J / kg / K  1607 ( )vC J / kg / K  1960 

( )P Pa  59058 10  ( )A GPa  1235.851 

( )q J / kg  61.15 10−   ( )B GPa  18.289 

  ( )C GPa  1.76 

  1R  6.104 

  2R  1.434 

  ( )3

ref kg / m  1662.039 

  ( )
CJD m / s  7108.23 

  ( )
CJP GPa  19.842 

  ( )
CJT K  4824.79 

Table II. Stiffened-gas (SG) and Jones-Wilkins-Lee (JWL) parameters for the 1D spherical underwater 

explosion test with a lagrangian scheme. 

   The domain is 40-cm long and is spatially resolved with 1000 cells. The PBXN-109 detonation 

products are initially set at P 7 GPa=  and 31662.039 kg / m = . The liquid water is initially set at 

P 1 bar=  and 31000 kg / m = . The conventional method fails as a negative square sound speed 
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arises. Conversely, the relaxation method completes the computation. The results are shown in Figure 

7, displaying a curve for each solution at 25 µs intervals with a final time of 100 µs. 

 

Figure 7. 1D spherical underwater explosion test with a lagrangian Godunov scheme. Dashed gray 

lines represent computed results with the conventional method (TEOS), and black lines correspond to 

the relaxation method (PEOS). Thin black lines represent the initial conditions. Each curve shows 

computed results every 25 µs until 100 µs. The conventional method fails after time 50 µs while the 

relaxation method runs until the end. At the center of the detonation-product bubble, the conventional 

method violates the convexity criteria of the JWL EOS. Conversely, the relaxation method does not 

reset the PEOS parameters, which prevents computational failure. 

The conventional method fails between 50 µs and 75 µs because the square sound speed of the 

detonation products becomes negative at the center of the detonation-product bubble. Expansion 

effects lead the detonation products to vacuum conditions resulting in negative square sound speed. 

The first two curves in each graph show that the results computed using the conventional method 

(TEOS) and the thermodynamic relaxation method (PEOS) are merged during the early stages of the 

computation. At a certain point, the convexity criteria (4.15) are no longer satisfied, and the relaxation 

method bypasses the reset step (4.8), preventing computational failure. 

In terms of computational time, both methods are nearly identical. No computational gain was 

expected in single-phase computations. As mentioned in the Introduction, CPU (Central Processing 

Unit) time restrictions occur in multiphase flows where relaxation solvers are mandatory. More 

specifically, pressure relaxation requires the solution of two interleaved Newton procedures when a 

phase governed by the MG EOS is present, which increases the computational time. This difficulty is 

alleviated with the relaxation method when the NASG EOS is used instead. In the following sections, 

the present thermodynamic relaxation method is investigated in various multiphase flow formulations. 
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6. Extension to multiphase flow models 

6.1. Baer and Nunziato type flow model 

The model of Baer and Nunziato (1986) considers a two-phase mixture evolving in total 

disequilibrium. The balance equations for phases l  and l  are, 
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 (6.1) 

The notations are the same as before. In addition, the volume fraction l  of phase l   is introduced. 

Index l  denotes the conjugate phase to l ,i.e., 1l =  implies 2=l  and vice versa. The mixture internal 

energy is defined as e Y e= l l  where Y /=   l l l  denotes the mass fraction of phase l.  The 

mixture density and pressure are defined as  =   l l  and P P .=  l l  

System (6.1) is a two-phase model for mixture flows evolving in pressure, velocity, and temperature 

disequilibria. The choice of interfacial average velocities u I  and pressures PI was originally expressed 

with the relations 2u u=I  and 1P P ,=I the symmetric choice 1u u=I  and 2P P=I  being possible as 

well. Saurel et al. (2003) proposed more general and symmetric estimates, 
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 (6.2) 

where Z c= l l l represents the acoustic impedance, and cl  is the speed of sound of fluid l.  

The first equation of System (6.1) is non-conservative and represents the transport of the volume 

fraction l  at the interfacial velocity u .I  During the advection stage, volume variations caused by 

pressure differences between the phases appear through the relaxation term ( )P P −l l
 with 

controlling the rate at which pressure equilibrium is reached. The second equation of System (6.1) 

describes the mass balance of the corresponding phase while the third equation is related to its 

momentum balance. This relation is non-conservative. The velocity relaxation term on the right-hand 

side of the momentum equations reads ( )u u −l l
 where   is the product of the specific interfacial 

area with the drag coefficient. It controls the rate at which the velocities tend toward equilibrium. 

Finally, the fourth equation of System (6.1) describes the energy balance of phase l. This latter is also 

non-conservative due to the presence of the term 
x

P u



I I

l  and the relaxation terms on the right-hand 

side. 
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System (6.1) is hyperbolic with wave speeds u ,I  u ,l  and u c ,l l   , thermodynamically consistent 

and symmetric. Its extension to more than two phases is possible (see Chinnayya et al., 2004 for 

instance). In the frame of the present contribution, System (6.1) is augmented by three transport-

relaxation equations for each phase l , written under a conservative form with the help of the 

corresponding mass relation (in the absence of mass transfer), 
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  (6.3) 

System (6.1) includes pressure and velocity relaxation source terms. Relaxation phenomena are then 

addressed depending on the flow conditions. Those relaxation processes may yield total or partial 

equilibrium depending on the rate at which the corresponding equilibrium is supposed to be reached. 

For example, in the context of deflagration-to-detonation transition in a granular explosive, typical 

timescales associated with the pressure and velocity relaxation processes are small (Kapila et al. 

2001). Stiff pressure and velocity solvers are consequently used. Details can be found for example in 

Le Métayer et al. (2013).  

   Stiff velocity relaxation solver does not involve thermodynamics. However, the computation of the 

instantaneous pressure equilibrium involves the equations of state of the fluids. An example of a stiff 

pressure relaxation solver is recalled hereafter and adapted to the present TEOS and PEOS. Following 

the various relaxations processes, the present thermodynamic relaxation step (4.8) is achieved if the 

convexity criteria (4.15) are met. Otherwise, thermodynamic relaxation is bypassed, as detailed in 

Section 4.4.  

 

6.2. Stiff pressure relaxation 

The phases as described by System (6.1) are initially in pressure disequilibrium. At the end of the 

pressure relaxation process, the phases have a common pressure, the other variables (velocity, 

temperature) being potentially different. In the presence of the pressure relaxation terms only, the 

ordinary-differential-equation system to examine for each phase l  reads,  
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                                                                                                             (6.4) 

As instantaneous pressure relaxation is addressed, there is no need for a precise knowledge of the 

pressure relaxation parameter   that is considered very large →+ . The second (mass) and third 

(momentum) equations of System (6.4) indicate that the velocity u l  remains unchanged during the 
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pressure relaxation process. Consequently, a stiff velocity relaxation solver may be used beforehand, 

the relaxed velocity is not affected.  

The second relation of System (6.4) involves mass conservation for each phase during the pressure 

relaxation process:  

( ) ( ) ( ) ( )0 0 1 1
,  =  l l l l                                                                                                                                 (6.5) 

where superscripts “(0)” and “(1)” denote the initial (post-hyperbolic) and final (relaxed) states 

respectively. In addition, with the help of velocity invariance, the combination of the first and fourth 

equations of (6.4) yields  

( ) ( ) ( ) ( ) ( )( )11 0 1 0
P ,e e v v= − −l l l l                                                                                                                 (6.6) 

where ( )1
P const P = =I  (common pressure to all phases) has been considered. The EOSs of the 

various phases are necessary to express the relaxed specific internal energy ( )1
el in (6.6) as a function of 

the relaxed specific volume ( )1
vl  and relaxed pressure ( )1

P .  The sought relaxed pressure is then 

computed through the fulfillment of the saturation constraint ( ) ( )0 1
1

 
 =  = 

 
 l l  written below with 

the help of (6.5) as, 

( ) ( ) ( )( )10 0
v 1 0.  − = l l l                                                                                                                         (6.7) 

The target EOS and predicted EOS are addressed hereafter. The goal is to showcase the simplicity and 

efficiency resulting from the present thermodynamic relaxation method. Indeed, with the TEOS, 

pressure relaxation requires two imbricated Newton loops, while a single procedure is needed with 

PEOS. 

 

a) Target EOS (TEOS) 

In the present context, TEOS is of MG form. The caloric formulation of the MG EOS (2.1) 

expresses as, 
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The combination of Relations (6.6) and (6.8) yields the following function, 
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                                         (6.9) 

The specific volume in the final state 
( )1

vl  then depends on the pressure 
( )1

P . The saturation constraint 

(6.7) consequently becomes a function of the relaxed pressure 
( )1

P ,  

( )( ) ( ) ( ) ( ) ( )( )( )1 0 0 11
f P v P 1 0.=   − = ll l                                                                                               (6.10) 

The resolution of Relation (6.10) provides the pressure in the final state 
( )1

P , common to all phases. 

An iterative method, such as the algorithm of Newton, is necessary. However, the expression of the 

specific volume 
( )1

vl  is not explicit with (6.9) for the general MG EOS due to the dependence of the 
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( )( )1

,kP vl l  and 
( )( )1

,ke vl l  terms on the specific volume. Consequently, for a given pressure ( )1
P  of the 

iterative procedure, another iterative method is needed to compute 
( ) ( )( )1 1

v P ,l satisfying Relation (6.9). 

Two imbricated Newton loops are then necessary when a phase governed by the MG EOS is 

considered, increasing consequently computational time. 

 

b) Predictor EOS (PEOS) 

The PEOS is of NASG-type so the expression of the specific volume is explicit. The caloric 

formulation of the NASG EOS (3.1) expresses as, 
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The combination of Relations (6.6) and (6.11) then yields an explicit formulation of the relaxed 

specific volume, 
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Consequently, a single iterative method is necessary to compute the pressure ( )1
P ,  solution to the 

saturation constraint (6.7), reformulated hereafter as, 

( )( ) ( ) ( ) ( ) ( )( )( )1 0 0 11
f P v P 1 0.=   − = ll l                                                                                               (6.13) 

As (6.12) is explicit, a single Newton loop is needed to solve (6.13). Furthermore, in the specific case 

where only two phases are present, an explicit solution appears. Indeed, after some algebraic 

manipulations, the combination of (6.12) and (6.13) leads to, 
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with, 
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6.3. Multiphase 1D results 

The flow model (6.1) can be used for a wide range of applications: 

- Two-phase mixtures evolving in velocity and temperature disequilibria, such as bubbly flows 

and dispersed flows with droplets or solid particles in a gas. 

- Interfacial flows, present when two materials are separated by an interface. In this frame two 

options are possible. 

• The use of stiff pressure and velocity relaxation solvers enables the flow model to 

fulfill the interface conditions. It was done in Saurel and Abgrall (1999a). Kapila 

et al. (2001) derived reduced equations with a single velocity and a single pressure 

in the same direction. 

• The use of non-conservative terms. These terms can match the interface 

conditions of equal velocities and pressures when the volume fraction is 

discontinuous and varies between 0 and 1. This feature is also useful for 

permeable interfaces, when the volume fraction is continuous or varies between a 

more restricted range. Examples can be found in Saurel et al. (2014). However, 

this option requires accurate (even exact) computation of the non-conservative 

terms, meaning that local interfacial pressure and velocity, computed with an 

Euler-Euler Riemann solver is needed. In many applications, when the material 

EOSs are complicated, accurate computation of these interfacial variables is 

challenging because exact Riemann solvers for such EOSs are too expensive in 

terms of computation time. The use of approximate Riemann solvers, such as 

HLLC, is challenging as the wave speed estimate is problematic when contact 

waves separate two fluids having very different sound speeds. 

In this section, the present relaxation method is illustrated for the computation of interfacial flows, 

first with pressure and velocity relaxation solvers, and second with non-conservative terms. This last 

option is the most challenging regarding robustness and accuracy with respect to the computation of 

the non-conservative terms.  

The numerical scheme used to solve System (6.1)-(6.2), and (6.3) is the Discrete Equations Method 

(DEM) from Abgrall and Saurel (2003). In the DEM, Riemann solvers for the Euler equations only are 

used. With the present thermodynamic relaxation method, the various Riemann problem computations, 

with the corresponding contacts 1-1, 1-2, 2-1, and 2-2, are done using exact Riemann solvers. This is 

possible because the PEOS is the stiffened-gas equation of state (the covolume is set to *b 0=l ). An 

appropriate exact Riemann solver is given for example in Godunov et al. (1976).  

Note that the same computations may be done with the method of Furfaro and Saurel (2015). In this 

framework, the present thermodynamic relaxation method is used to compute the lagrangian fluxes in 

order to improve computational accuracy of PI and u I  present in both the corresponding 4-wave 

Riemann solver and in the non-conservative terms.  

For the sake of clarity, the DEM is used with exact Riemann solver. The computations are 

performed with a second-order scheme in space and time on a 2000-cell grid and the results are 

displayed in Figure 8 when the first option is used.  The time step is computed with a CFL criterion of 

0.5. 

   The initial conditions involve a membrane located at 0.8 m separating nitromethane with a density 

equal to 31134 kg / m =  and governed by the CC EOS (with parameters given in Table I) from air 
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with a density equal to 350 kg / m =  and governed by the ideal-gas EOS with a specific heat 

coefficient equal to 1 1

vC 719 J.kg .K− −=  and an adiabatic coefficient equal to 1.4, =  resulting in 

( ) 1 1

vR 1 C 287.6 J.kg .K .− −=  − =  The left chamber is initially set at pressure P 2000 bars=  and the 

right chamber is set at the atmospheric pressure P 1 bar= . The final time is set to 276 µs. The volume 

fraction of nitromethane is set to 610−  in the right chamber and the volume fraction of air to 610−  in 

the left chamber.  

 

Figure 8. Shock-tube test case with the symmetric variant of the Baer and Nunziato equations with 

instantaneous velocity and pressure relaxations. Dashed gray lines represent computed results with the 

conventional method (TEOS), and black lines correspond to the relaxation method (PEOS). Thin black 

lines represent the exact solution computed with the Riemann solver of Saurel et al. (1994). Results are 

shown at time 276 µs. As pressure and velocity are instantaneously relaxed, only one pressure and one 

velocity are displayed. Since temperatures are in disequilibrium, the nitromethane temperature is 

shown on the left of the contact, while the air temperature is displayed on the right. The present 

relaxation method perfectly recovers the target EOS results. 

The results computed with the relaxation method using PEOS are merged with those obtained with 

the conventional method using TEOS. Furthermore, the use of the NASG EOS expressions throughout 

the numerical code is computationally cheaper than with CC EOS. Consequently, PEOS computations 

are 1.8 times faster than with TEOS. 

The same test with the same initial conditions is now re-run without pressure and velocity relaxation 

solvers. In the absence of relaxation terms, each fluid evolves with its own pressure, velocity, and 

 

  

   

    

     

              

 
  
 
 
  

 

     

    
    
              

 

  

  

  

  

   

   

   

              

 
  
 

  
 

     

    
    
              



27 

 

temperature. Coupling between the fluids is therefore solely controlled by the non-conservative terms 

on the right-hand side of System (6.1) that enforce continuity of pressure and velocity across the 

contact wave. 

This test case is quite sensitive to the discretization of the non-conservative terms. The HLLC solver 

used so far in the Discrete Equations Method is a versatile approximate Riemann solver that can be 

easily extended to complex EOSs but requires an accurate estimation of the wave speeds. Various 

estimates are for example given in Toro (1999). However, none of them is appropriate when material 

discontinuities are present. An exact Riemann solver could be used with general EOSs (Saurel et al. 

1994), but it is too expensive. Using the PEOS in this context is of significant interest as it reduces to 

the stiffened-gas EOS. Exact Riemann solvers for the Euler equations with the stiffened-gas EOS have 

been derived for instance in Godunov et al., (1976), Plohr (1988).  

The aim of the following test is to compare the solution obtained with the HLLC solver using TEOS 

with the exact solver using PEOS. The results are shown in Figure 9 (pressures) and Figure 10 

(velocities). 
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Figure 9. Shock-tube test case with the symmetric variant of the Baer and Nunziato equations in the 

absence of relaxation terms. In this test case, the contact conditions are fulfilled only by the action of 

the non-conservative terms. The left column shows the results associated with the Discrete Equations 

Method (DEM) and the HLLC solver, whereas the right column shows the results associated with the 

DEM and the exact Riemann solver for the stiffened-gas EOS. The bottom figures are magnified views 

of the respective simulations. Thick black lines represent air whereas dashed gray lines represent 

nitromethane. Thin black lines represent the exact solution computed with the method of Saurel et al. 

(1994) and the thin vertical line indicates the exact location of the contact. The results are shown at 

time 276 µs. The thermodynamic relaxation method is used together with the exact Riemann solver 

with the stiffened-gas EOS. The nitromethane pressure on the left is perfectly matched with the air 

pressure in the right column (PEOS), while an oscillation is present in the left column (TEOS).  
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Figure 10. Same as Figure 9 but with velocities displayed instead of pressures. 

   With HLLC and the wave speed estimates of Davis (1988), matching is clearly perfectible resulting 

in a poor approximation of the gas variables to the right of the contact wave (results in the left 

column). On the other hand, when the exact Riemann solver based on the PEOS is used, the agreement 

with the exact solution is improved. 

Consequently, with the present thermodynamic relaxation method, it is possible to use the Discrete 

Equations Method to solve the Baer-and-Nunziato-type model (6.1) with exact Riemann solvers, even 

when sophisticated EOSs are present. Indeed, these EOSs locally reduce to the stiffened-gas equation 

of state, for which an exact Riemann solver is available and suitable for computing the interface 

conditions through non-conservative terms.  

 

7. Diffuse interface computations 

7.1. Flow model 

As mentioned earlier, one way to compute interfacial flows, is to address the Baer-and-Nunziato-

type model (6.1) with stiff pressure and velocity relaxation solvers. A simpler, faster, and very robust 

method consists of using the homokinetic model of Saurel et al. (2009). Pressure relaxation is still 

present to approximate the non-conservative term of the model of Kapila et al. (2001).  

   The model of Saurel et al. (2009) is a hyperbolic overdetermined system composed of the following 

equations (presented in 1D for the sake of simplicity), 
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                                            (7.1) 

The notations remain the same as before. In addition, the mixture center of mass velocity u,  common 

to all phases, is introduced. In the frame of the present contribution, System (7.1) is augmented by 

three transport-relaxation equations for each phase l, written under conservative form with the help of 

the mixture mass equation, 

( )( )

( )( )

( )( )

( )

* *

, ,

, ,

* *
*

* *
*

*
P P u

t x

R R
R

t x

q q
q

t x

with 0 when the convexity conditions 4.15  are fulfilled

P v P ,

u
R v ,e ,

r,  othe w s

u
q v ,

.i e 

 
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   (7.2) 

   The interfacial pressure appearing on the right-hand side of (7.1) reads 
P 1

P / .
Z Z

   
=    

   
 I

l

l l

 In 

this formulation, the volume fraction equation corresponds to a simple transport equation with stiff 

relaxation, for which there is no difficulty in preserving volume fraction positivity. The stiff pressure 

relaxation solver presented previously directly applies and provides the relaxed pressure ( )1
P  and 

relaxed specific volumes  ( )1
v .l  In addition, following Saurel et al. (2009), the internal energies are also 

reset with the mixture pressure at mechanical equilibrium and the relaxed specific volumes. This task 

does not pose any particular difficulty for either TEOS or PEOS. The reader is then referred to the 

aforementioned reference. The presence of the non-conservative terms in the internal energy equations 

thus becomes of minor importance.  

System (7.1-7.2) is hyperbolic with wave speeds u and fu c  with the following definition for the 

square sound speed: 
22

fc Y c .= l l  Numerical computations have shown excellent convergence to 

exact solutions for interfaces separating (nearly pure) fluids, even under extreme flow conditions. 

More details regarding numerical resolution of this model are available in Saurel et al. (2009), 

Chiapolino et al. (2017), and Saurel and Pantano (2018) for example. 

 

7.2. Underwater explosion 

A multi-dimensional illustration on an unstructured mesh is now presented. In the following, the 

present relaxation method is illustrated on an underwater explosion test. The computational test 
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corresponds to a high-pressure PBXN-109 bubble of gas products settled underwater, close to the 

water-air surface. Such a situation occurs when an underwater-explosion bubble reaches the surface. 

Relevant literature on the subject can be found for example in Holt (1977), Grove and Menikoff 

(1990). The detonation is not resolved but considered as a constant volume explosion resulting in 

high-pressure and high-density gas products. The liquid water surrounding the charge is initially 

considered at atmospheric conditions. The air above is at rest and at atmospheric conditions as well. 

The initial conditions and geometrical dimensions are depicted in Figure 11. 

 

Figure 11. Initial conditions of the 2D underwater explosion test. PBXN-109 detonation products are 

immersed in still liquid water. Atmospheric air is present above water. Water and air are initially at 

101325 Pa and 298 K. Detonation products are initially at 1 GPa and 4800 K. Maximum and minimum 

initial volume fractions are 
6

max 1 2 10− = −   and 
6

min 10 .− =  Wall boundary conditions are 

prescribed for all sides. Six gauge pressure and density sensors are located at coordinates 

( )1S 12,5.75 ,= ( )2S 12,11 ,= ( )3S 12,11.4 ,= ( )4S 12,13 ,= ( )5S 12,19.5= and ( )6S 6,5.5 .=  

PBXN-109 detonation products are described by the JWL EOS. Liquid water and atmospheric air 

are described by the NASG EOS, reducing to the stiffened-gas and ideal-gas EOSs respectively. The 

EOS parameters for the liquid water and PBXN-109 detonation products are given in Table II (Section 

5). The EOS parameters for the air are those of Section 6.3. 

The present configuration is close to the 1D underwater explosion test of Section 5.3 where 

computational failure of JWL has been observed. In the following computations, the heat capacity of 

the PBXN-109 detonation products is reduced from 1 1

vC 1960 J.kg .K− −=  to 1 1

vC 1000 J.kg .K .− −=

With this low value, the convexity criteria (4.15) are satisfied as shown in Appendix B. As the purpose 

of the present explosion test is purely illustrative, 1 1

vC 1000 J.kg .K− −=  is adopted to enable 

computations with JWL. Consequently, a comparison is made between TEOS and PEOS. 

The results computed with the present thermodynamic relaxation method are presented in Figure 12 

in terms of mixture-pressure-gradient contours and liquid-volume-fraction contours. The mesh 

consists of 356,620 unstructured triangles. The hyperbolic part of System (7.1-7.2) (in the absence of 

source terms) is solved using the second-order MUSCL-type (Monotonic Upstream-centered Scheme 
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for Conservation Laws) scheme, presented for instance in Chiapolino et al. (2017) and the HLLC-type 

Riemann solver introduced in Saurel et al. (2009). The interface-sharpening method of Chiapolino et 

al. (2017) is used as well with the help of the Overbee flux limiter. The time step is computed with a 

CFL number of 0.5. 

 

 

Figure 12. Two-dimensional underwater explosion test with the pressure non-equilibrium model of 

Saurel et al. (2009). Eight values of the liquid-volume-fraction isocontours are displayed within the 

range [0.1-0.9] in all figures. The mixture-pressure-gradient contours are displayed as well. Results are 

computed with the second-order MUSCL-type scheme and the interface-sharpening method presented 

in Chiapolino et al. (2017). The mesh consists of 356,620 unstructured triangles. The present 

thermodynamic relaxation method is used. 

Due to the high-pressure gradient between the detonation products and the surrounding water, a 

strong shock is emitted into the water while an expansion wave propagates into the gas. The liquid-gas 

interface is set in intense motion and the bubble deforms. Another wave diffraction occurs at the 

liquid-air interface, resulting in the motion of the two liquid-gas interfaces. The bubble grows 

intensively, resulting in the appearance of a thin liquid layer between the air and the detonation 

products. This layer is stretched during time evolution and finally breaks into several fragments. No 

fragmentation model is introduced in the present computations. Effects of surface tension can be 

introduced, following Perigaud and Saurel (2005), but this is out of the scope of the present 

contribution. 

Phase transition was not considered. However, the method is able to fragment a liquid film subjected 

to tension. Indeed, if the single-phase Euler equations were solved in the liquid, the pressure would be 

negative due to liquid tension. With the present diffuse-interface formulation (System 7.1), thanks to 

the small amount of air present in the liquid, sub-scale bubbles grow during pressure relaxation, 
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maintaining pressure positivity and resulting in the dynamic appearance of new interfaces that result in 

the formation of fragments. Such a break-up occurs automatically as a result of stretching (Saurel et al. 

2009). This simplified modeling of cavitation is in principle representative enough in explosion 

situations such as the present case. 

Pressure signals with and without the present thermodynamic relaxation method are compared in 

Figure 13. 

 

 

Figure 13. Two-dimensional underwater explosion test with the pressure non-equilibrium model of 

Saurel et al. (2009). Dashed gray lines represent computed results with the conventional method 

(TEOS), and black lines correspond to the relaxation method (PEOS). The results are compared in 

terms of mixture pressure with the help of the various sensors placed in the numerical domain (Figure 

11). The present relaxation method perfectly recovers the target EOS results. The results are computed 

using the modified heat capacity of 
1 1

vC 1000 J.kg .K− −=  for the PBXN-109 detonation products, 

which provides easier numerical conditions, as seen in Appendix B. 

The results computed with the relaxation method using the predictor EOS are merged with those 

obtained with the conventional method using the target EOS. Moreover, the use of the NASG 

expressions throughout the numerical code is computationally cheaper than with the JWL EOS. For 

the present test, parallel computations are run using MPI (Message Passing Interface) architecture and 

60 CPUs. The TEOS simulation requires 35 minutes while the PEOS needs 21 minutes. The PEOS 

simulation is about 1.67 times faster than the TEOS simulation. 

In the following, the same test is rerun with the actual heat capacity 1 1

vC 1960 J.kg .K− −=  for the 

PBXN-109 detonation products, which is calculated from the thermochemical code Cheetah (see Yoh 

et al., 2005). In this situation, the conventional computation (TEOS) quickly fails as the third 

convexity condition of (4.15) is violated, indicating an unrealistic thermal expansion coefficient 

PT

1

v

v


 =  and isothermal compressibility coefficient T

T

1

v

v

P
= −




 , as seen in Section 4 via Eq. 

 

   

   

   

   

    

    

    

             

 
  
 
 
  

 

      

        

    

    

 

    

    

    

    

    

    

    

    

    

     

     

             

 
  
 
 
  

 

      

        

    

    

 

   

    

    

    

    

    

    

    

    

    

             

 
  
 
 
  

 

      

        

    

    

 

  

  

  

  

   

   

   

   

             

 
  
 
 
  

 

      

        

    

    

 

 

  

  

  

  

             

 
  
 
 
  

 

      

        

    

    

 

   

   

   

   

   

   

   

   

   

             

 
  
 
 
  

 

      

        

    

    



34 

 

(4.16).  Failure occurs in numerical cells where the detonation-product phase is present in extremely 

small proportions and is subject to variations dictated by another phase, as discussed in Section 4.4.  

As the convexity criteria are no longer satisfied, the thermodynamic relaxation method (PEOS) omits 

the relaxation step, enabling the predictor EOS to carry out the computation. The results are compared 

in Figure 14.  

 

 

Figure 14. Two-dimensional underwater explosion test with the pressure non-equilibrium model of 

Saurel et al. (2009). Dashed gray lines represent computed results with the conventional method 

(TEOS), and black lines correspond to the relaxation method (PEOS). Pressure signals are compared at 

the various sensors placed in the numerical domain (Figure 11). The results are computed using the 

actual heat capacity of 
1 1

vC 1960 J.kg .K− −=  for the PBXN-109 detonation products. Beyond 0.45 

ms, the conventional method (TEOS) fails while the relaxation method (PEOS) continues and 

completes the simulation. 

The results indicate that at the early stages of the computations, the two methods (TEOS and PEOS) 

are merged. The PEOS method, with relaxation deactivated, continues while the TEOS method fails, 

and produces results consistent with those previously obtained.  

 

8. Conclusion 

A novel method has been developed to compute flows with sophisticated EOSs such as MG 

formulations. The present method has several key features: 

- It automatically achieves the EOS prolongation that significantly improves the robustness of 

the computations, as most considered EOSs have a limited range of validity.  

- It is 40% faster than computations achieved with the original EOS, in the multiphase flow 

examples considered herein. 

- It is versatile, in the sense that various flow models can be considered with this method. 
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It is planned to extend the method to extra physics, such as cubic EOSs, as well as virial ones, each 

one having important interest in different technical areas. 

 

In memoriam  

This paper is dedicated to the memory of Sergei Konstantinovich Godunov. 

 

Appendix A. Mayer relation for TEOS and PEOS 

The derivations leading to Relation (4.3) 
*

*

v

R
C =


 are detailed in this appendix. The aim is to derive 

the relation of Mayer for both the TEOS and the PEOS. The general form of the relation of Mayer is, 

p v

Pv

C C T .
P v

T T
=

 


−


          (A.1) 

This thermodynamic relation is general in the sense that it is valid regardless of the equation of state 

(Nayigizente, 2021). The parameter pC  represents the specific heat at constant pressure. For the 

TEOS, with the help of Relations (2.1), the relation of Mayer (A.1) reads, 

p

v

.
C

1
C

= −             (A.2) 

Similarly, the relation of Mayer for the PEOS with Relations (3.1) is, 

*

p

* *

v

*

v

C R
1 .

C C
− =            (A.3) 

The specific heat ratio p vC / C =  corresponds to the polytropic coefficient. Since both TEOS and 

PEOS aim to predict the same results for a given fluid, the polytropic coefficient is merged for both 

EOSs. Consequently, combining Relations (A.2) and (A.3) leads to, 

*
*

v

R
C .=


           (A.4) 

As 
v

p
v

e
 =




by definition, and as the specific volume v  is provided by the flow model regardless of 

the equation of state, it implies,  

TEOS PEOS

v v

P P
.

e e




=



                                                                                                                           (A.5) 

 

Appendix B. Convexity for TEOS 

Convexity of an equation of state requires fulfillment of various criteria (Godunov et al., 1976, 

Menikoff and Plohr, 1989), 
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 
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  
  
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       − 
     

 

                                                                                            (B.1) 

where s represents the specific entropy. However, the formulation of the entropy may not always be 

practical to manipulate. To avoid such a complexity, the criteria (B.1) are reformulated without 

entropy. Calculations are based on the following two sets of relations. 

• The Gibbs identity, 

de Tds Pdv.= −                                                                                                                                (B.2)  

• The Maxwell relations (Callen and Kestin, 1960), 

s v

s P

v T

T P

T P
,

v s

T v
,

P s

P s
,

T v

s v
.

P T

 
= −

 

  

=
 


  = −

 

 

= − 

                                                                                                                                 (B.3) 

After various manipulations using (B.2) and (B.3), the convexity conditions (B.1) are rearranged as: 

k

2

2

1

T vv

1

T v

2
2

2

T T Tv

c
0,

v

T e e
p 0,

p v T

e e
p 0,

v T

e e c e e
p p 0.

v v v p v

−

−

−







     +   
     


   
+       

       
 + − −              

                                                                                 (B.4) 

Inserting the general formulation of MG EOS (2.1) into (B.4) and after some simple algebraic 

manipulations, the set of convexity criteria (4.15) is obtained, 

( )

( )

( )

k
k

k

k
k

v dP
P P v ,

dv

P P v ,

dP
P P v v .

dv

1


 +





  +


 +

                                                                                                                     (B.5) 
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These three relations imply the positivity of the squared speed of sound, the temperature, and the 

thermal expansion and isothermal compressibility coefficients respectively (see Section 4.4, Eqs. 4.15-

4.16). 

   It is also worth mentioning that, applied to the JWL EOS, Relations (B.5) can be further manipulated 

by inserting the thermal EOS (second equation of Relations (2.1)) to obtain: 

( )v k

v

v k
v 2

C 1 T dP
v 0,

v dv

C T
0,

v

C T dP
C T 0.

v dv

   +
− 






  

−   
 

                                                                                                            (B.6) 

Assuming that 
vC , , v 0  , the second inequality of Relations (B.6) implies T 0  that consequently 

imposes kdP
0

dv
 thanks to the first and third inequalities. This means that the function kP  must be 

strictly monotonically decreasing. Using Relations (2.4), one obtains: 

( )

( )( )

1 2
ref ref

v v 1
R R

v v ref
k

1 2 ref

1

CJ 1 CJ CJCJ ref
v

CJ CJ CJ

v
P v Ae Be k

v

A,B,R ,R , v, v 0 k 0

P P v vCv v
C

T v T

+
− −

+

 
 + +  

 

  

− 
  = 

  

                                                                        (B.7) 

The JWL EOS is consequently convex as long as T 0  under the strong constraint on 
vC  defined in 

Relation (B.7). However, this constraint may yield unrealistically low values for 
vC  and consequently 

inaccurate temperature predictions close to the Chapman-Jouguet point. Furthermore, a similar 

condition is not straightforward to derive for other MG-type EOSs such as the CC EOS. 

   Note that for the PBXN-109 detonation products used for the 2D underwater explosion test (Section 

7), the JWL parameters provided in Table II yield, 

1

1 1CJ ref
v

CJ CJ

v C v
C 1032.15 J.kg .K .

T v

+

− −
 

 = 
  

                                                                                   (B.8) 

As the present 2D computation is only illustrative, 1 1

vC 1000 J.kg .K− −=  is chosen to provide better 

numerical conditions, based on the previous observation.  
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