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Abstract

The numerical simulation of waves propagation with fluid and particles disper-
sion in highly heterogeneous media such as cities, urban places, industrial plants
and part of countries is addressed. Examples of phenomena under study are chem-
ical gas products dispersion from damaged vessels, gas dispersion in urban places
under explosion conditions, shock wave propagation in urban environment. A
three-dimensional simulation multiphase flow code (HI2LO) is developed in this
aim. To simplify the consideration of complex geometries, an heterogeneous dis-
crete formulation is developed. When dealing with large scale domains, such as
countries, the topography is considered with the help of elevation data. Meteo-
rological conditions are also considered, in particular regarding complex temper-
ature and wind profiles. Heat and mass transfers on sub-scale objects, such as
buildings, trees and other obstacles are considered as well. Particles motion is
addressed through a new turbulent model involving a single parameter to describe
accurately plumes dispersion. Validations against experiments in basic situations
are presented as well as examples of industrial and environmental computations.

1 Introduction and background

In many physical and industrial situations, it is important to predict the effects of
blast wave, gas and particles dispersion resulting from an explosion. At least, two
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types of difficulties appear when dealing with such numerical simulations. First,
the topology of the medium under interest may be very complex regarding the
presence of many obstacles or objects of different types. Second, large disparities
in both space and time scales often require attention. This is the case when dealing
with the dispersion of gases from explosions in strongly heterogeneous media such
as urban places, cities and hilly grounds.
Various existing computational codes are available in this area: FLACS, devel-
oped for many years and widely documented [8,9,10,11,12], CFD-URBAN [13] or
FEFLO [5,6,7]. These codes are used to predict gas clouds dispersion on complex
geometries such as cities or industrial sites and allow the study of risk explosion
effects. The approach promoted in the present work is similar to the one adopted
in the FLACS code regarding topology and geometrical considerations. Indeed,
FLACS takes into account the geometry details with the help of an internal poros-
ity allowing the presence of obstacles within the control volume. FEFLO is an
unstructured finite-element, finite volume code able to describe complex geome-
tries with the help of sophisticated mesh generator. CFD-URBAN is able to model
fluid flows and concentration dissemination in domains such as cities, but in the
absence of shocks or blast effects.
Alternatively, many hydrocodes are available to model blast effects, such as AU-
TODYN [2], Air-3D [1] or SHAMRC [3]. These codes allow the study of unsteady
phenomena such as shock waves in the presence of buildings, in the context of
moderate geometrical complexity.
Thus, in the authors knowledge, there are mainly two existing strategies to con-
sider both blast effects and gas dispersion in complex media:

• Flow solvers based on unstructured grids, such as FEFLO. Even if this ap-
proach is able to deal with heterogeneous media, small scale objects such as
for example, trees or cars may cause difficulties.

• Cartesian grid solvers with an internal porosity, such as FLACS.

The present work belongs to the second class, with an heterogeneous media model
built on the basis of rigorous mathematical basis. A discrete model [14] is de-
veloped to deal with gas dynamics in highly heterogeneous media. In addition,
particles cloud dispersion effects are considered through a turbulent pressureless
gas dynamics model fully coupled with the gas dynamics equations. In the present
heterogeneous media, obstacles of very different sizes may be present. Large Eddy
Simulation (LES) is no longer appropriate to solve the gas dynamics equations
over such complex geometries, as the time to generate the mesh is prohibitive, as
well as the computational time on long time scale events. Thus an homogenized
model with cells of large dimensions containing obstacles is more appropriate [14].
This type of model belongs to the class of averaged multiphase flows models as
described in [15,16] but with a single phase, the other phase corresponding to
motionless obstacles. The model considers the volume occupied by the solid ob-
stacles as well as their effects on the macroscopic flow dynamics. In this aim,
the local pressure forces are determined by considering internal boundaries and
specific Riemann solvers, or specific boundary solvers. In that sense, the method
presented in this paper is quite close to embedded boundary methods (or cut-cell)
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approaches [17,18] when dealing with the geoemtry description. It differs when
very small obstacles are present, such as trees for which the exchange surface is not
those of the cut-cell. We summarize in the present paper the discrete model of [14]
and extend it to mass concentration determination as well as particle dynamics
equations. In this aim, the high order ADER scheme [24,25] is used to reduce the
numerical diffusion and compute accurately gas concentration fields. Mass diffu-
sion and heat exchanges are introduced both at macroscopic and sub-scale levels.
Last, examples of simulations on urban and on very large scales are presented to
show capabilities of the three-dimensional simulation code.

2 Heterogeneous model building

To build the discrete model of heterogeneous media, a two phase control volume
containing a gas and a motionless solid is considered. The equations for the dis-
persed phase (particles or droplets) will be considered later. The gas phase is
governed by the multi-component Euler equations, dissipative effects being con-
sidered later as well.

2.1 Gas dynamics equations

The equations to consider in the gas phase are the multicomponent gas dynamics
equations:

∂U

∂t
+∇.F = 0 (1)

Where U represents the conservative variables vector and F the fluxes vector:

U =
(
ρYk, ρ, ρu, ρE

)T
F =

(
ρYku, ρu, ρu⊗ u+ P I, (ρE + P )u

)T
ρ, u and P represent respectively the mixture density, the velocity vector and
the pressure. Yk is the mass fraction of the chemical species k and E is the total
energy, defined by

E =
‖u‖2

2
+ e(T, Yk)

The thermodynamic closure of System (1) is given by the ideal gas equation of
state for the mixture:

e(T, Yk) =

N∑
k=1

Ykek(T )

ek(T ) =

∫ T

298
cvkdT + e298k

with P = ρRT and R, the mixture gas constant: R =
R̂

Ŵ
with Ŵ , the molar mass

of the mixture (
1

Ŵ
=

N∑
k=1

Yk
Wk

).
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2.2 Integration on heterogeneous control volume

System (1) is integrated on a heterogeneous control volume containing both fluid
and solid and over a time step (this control volume is shown in Figure 1). Space
and time integration provide the discrete heterogeneous model. The procedure
starts with, ∫ tn+1

tn

∫
Vi

{
∂U

∂t
+∇.F

}
dV dt = 0

where Vi corresponds to the fluid volume within the cell, which is not necessarily
equal to the cell volume, because of the possible presence of internal solid obstacles.
The mass conservation equation is integrated hereafter, as a calculation example.
The following integrals have to be computed,∫ tn+1

tn

∫
Vi

∂ρ

∂t
dV dt+

∫ tn+1

tn

∫
S
ρ(u.n)dSdt = 0 (2)

Leak

Obstacles

Control

Volume

Figure 1: Representation of the heterogeneous control volume. Internal obstacles can
potentially burst, inducing gases leakages within the cell.

Typical surfaces to consider are shown in Figure 2. n represents the outward nor-
mal vector for the fluid.

The integration surfaces can be fluid or solid. These surfaces are considered both
inside and at the cell boundaries. With the definitions of Figure 2, it is possible
to split the surface integral of Equation (2) in several parts,

S = SF + SS + S0
F + S0

S

SF and SS are respectively, the fluid surface and the solid surface on the cell edges.
S0
F and S0

S are respectively the permeable surface and the solid surface contained
within the cell. Thus,

S0
F = S0x

F l + S0x
Fr + S0y

F l + S0y
Fr + S0z

F l + S0z
Fr

S0
S = S0x

Sl + S0x
Sr + S0y

Sl + S0y
Sr + S0z

Sl + S0z
Sr
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SFi−1/2

SFi+1/2

SFi+1/2

Ss i+1/2

SFj+1/2

SFj−1/2 Ssj−1/2

Ss j+1/2

SFj−1/2

Ss
0 x

D

Ss
0 x

G

Ss
0 x

D

Ss
0 y

G

Ss
0 y

D

SF
0 x

D

Subscale (cars, trees..)

Figure 2: Representation of the integration surfaces which can be solid or fluid.

For the mass conservation equation, the flux contribution related to the solid
surfaces vanishes. Regarding permeable surfaces at the cell edges, a conventional
Riemann problem for the Euler equations [19] is solved to determine the fluxes.
When dealing with internal obstacles, the same reasoning applies. Solid walls in-
volve cancellation of the fluxes and tank boundary condition is used if the surface
becomes permeable. Thus, the discrete model for the mass equation reads:

(ρV )
n+1
i,j,l = (ρV )

n
i,j,l −∆t



{(ρu)∗SF }i+ 1
2
− {(ρu)∗SF }i− 1

2
+ {(ρv)∗SF }j+ 1

2

−{(ρv)∗SF }j− 1
2
+ {(ρw)∗SF }k+ 1

2
− {(ρw)∗SF }k− 1

2∑[
(ρu)∗S0x

Fl − (ρu)∗S0x
Fr + (ρv)∗S0y

F l − (ρv)∗S0y
Fr

]
+
∑[

(ρw)∗S0z
F l − (ρw)∗S0z

Fr

]


(3)

The variables marked with the superscript * correspond to the ones computed at
a given cell boundary with the help of a Riemann solver (HLLC or exact solver)
[19,20] . Equation (3) corresponds to a Godunov type scheme for heterogeneous
cells. The fluxes linked to internal volumes are boxed in expression (3). The same
calculation method is used for all the equations of System (1), in order to get the
full discrete model. Integration of the energy equation gives a discrete formula,
similar to the mass discrete equation. Some care has to be taken with the momen-
tum equation. Indeed, additional terms due to the pressure force integration on
internal obstacles surfaces are present. The resulting equation is given hereafter,
the calculation details are given in [14].
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(ρuV )n+1
i,j,l = (ρuV )ni,j,l −∆t





{(ρu2 + P )∗SF }i+ 1
2
− {(ρu2 + P )∗SF }i− 1

2
+ (P ∗

s SS)i+ 1
2

−(P ∗
s SS)i− 1

2
+ {(ρuv)∗SF }j+ 1

2
− {(ρuv)∗SF }j− 1

2

+{(ρuw)∗SF }k+ 1
2
− {(ρuw)∗SF }k− 1

2

+
∑(

(ρu2 + P )∗S0x
Fl − (ρu2 + P )∗S0x

Fr + P ∗
s S

0x
Sl − P ∗

s S
0x
Sr

)
+

∑(
(ρuv)∗S0y

Fl − (ρuv)∗S0y
Fr + (ρuw)∗S0z

Fl − (ρuw)∗S0z
Fr

)


i



{(ρv2 + P )∗SF }j+ 1
2
− {(ρv2 + P )∗SF }j− 1

2
+ (P ∗

s SS)j+ 1
2

−(P ∗
s SS)j− 1

2
+ {(ρuv)∗SF }i+ 1

2
− {(ρuv)∗SF }i− 1

2

+{(ρvw)∗SF }k+ 1
2
− {(ρvw)∗SF }k− 1

2

+
∑(

(ρv2 + P )∗S0y
Fl − (ρv2 + P )∗S0y

Fr + P ∗
s S

0y
Sl − P ∗

s S
0y
Sr

)
+

∑(
(ρuv)∗S0x

Fl − (ρuv)∗S0x
Fr + (ρvw)∗S0z

Fl − (ρvw)∗S0z
Fr

)


j



{(ρw2 + P )∗SF }k+ 1
2
− {(ρw2 + P )∗SF }k− 1

2
+ (P ∗

s SS)k+ 1
2

−(P ∗
s SS)l− 1

2
+ {(ρuw)∗SF }i+ 1

2
− {(ρuw)∗SF }i− 1

2

+{(ρvw)∗SF }j+ 1
2
− {(ρvw)∗SF }j− 1

2

+
∑(

(ρw2 + P )∗S0z
Fl − (ρw2 + P )∗S0z

Fr + P ∗
s S

0z
Sl − P ∗

s S
0z
Sr

)
+

∑(
(ρuw)∗S0x

Fl − (ρuw)∗S0x
Fr + (ρvw)∗S0y

Fl − (ρvw)∗S0y
Fr

)


k



.

The resulting numerical scheme corresponds to a finite volume scheme (Go-
dunov type scheme). This type of scheme has been successfully used for
many flow conditions, ranging from high speed to atmospheric flows [4]. It is
also possible to use approximate Riemann solvers with specific corrections al-
lowing the convergence to the incompressible solution by modifying the wave
speed within the solver when dealing with low Mach number (for details, see
[36,37,38]. A second order space and time MUSCL-Hancock type extension
[19] is used in the HI2LO code to solve the discrete heterogeneous model.

2.3 Discrete model of heterogeneous media validations:

Basic flow configurations are considered to assess the discrete heterogeneous
model accuracy. Experimental data from different experiments are used in
this aim.

2.3.1 Interaction of a shock wave with obstacles

The model is tested over some significant experimental flow configurations
[21]. The interaction of a shock wave with solid plates inside a square cross
section shock tube is considered. The experimental configuration is shown
in Figure 3. Internal obstacles in the discrete formulation are used to model
the vertical plates. It means that the internal obstacles are not considered
at the cell boundaries but as internal source terms. Pressure gauges located
at different places are considered to record pressure signal versus time.

Initial conditions in the high pressure chamber are the following, P = 675kPa

6



Figure 3: Experimental configuration of shock tube with vertical obstacles.

and T = 338.6 K. Atmospheric conditions are considered in the low pres-
sure chamber, P = 101325 Pa and T = 296.49 K. The Mach number of the
incident shock is M=1.5. Positions of the plates and gauges are:

xP1 = 2.97m xP2 = 3.08m xP3 = 3.19m xP4 = 3.41m
xC1 = 2.63m xC2 = 2.97m xC3 = 3.19m xC4 = 3.52m

750 cells in the x direction are used for the computations. Figure 4 shows
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Figure 4: Pressure signals obtained with HI2LO (lines) compared to the experimental
ones (symbols) at 4 different locations in the shock tube. The vertical obstacles have a
surface equal to A/4 where A represent the shock tube cross section. The shock wave
Mach number is 1.5.
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the recorded and computed pressure signals at the various locations. Note
that the computed pressure corresponds to an averaged value and not to a
local pressure, such as the measured one. A Correct agreement is obtained,
particularly regarding the waves dynamic that is well reproduced. The com-
puted results are obtained with a coarse mesh, indeed, it involves 4 cells only
in each cross section.

2.3.2 Blast wave interaction with a single obstacle

The interaction of a blast wave with a rectangular obstacle is addressed. The
experiments were carried out in [22,23]. A small hemispherical charge made
of propane-oxygen mixture is ignited and forms a detonation. A shock wave
propagates in the air and interacts with the square obstacle. The pressure
gauges positions and initial configuration are shown in the Figure 5.

Figure 5: Experimental facilities and pressure sensor locations

The computations are performed in three dimensions with a mesh involving
2 millions cells. The propane-oxygen explosion is considered as a constant
volume one, corresponding to the following conditions:

P0 = 18.97 105Pa, ρ0 = 1.82 kg/m3,
γ = 1.206, Cv = 1385 J/kg/K.

Atmospheric conditions are considered in the rest of the field. Results are
shown in Figure 6 where the overpressure signals are plotted and compared to
the experimental results. Correct agreement is obtained. The wave dynamics
and overpressure peaks are well reproduced.
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Figure 6: Pressure signals recorded at the various pressure sensors of the experiments
(lines), compared to the numerical results (symbols).

3 A high order scheme to compute gas species

concentration

The aim is now to track pollutant concentrations in the same type of hetero-
geneous media as previously. The present approach relying on finite volumes
approximation in conjunction with long time evolutions results in numerical
diffusion effects and forbids the correct prediction of the concentration fields.
The solution considered here consists in using the third order version of the
ADER scheme [24,25] for the gas species concentrations.

3.1 The ADER scheme

The ADER scheme allows the determination of a high-order flux which can
be used in a finite volume Godunov type scheme. This scheme was introduced
in [24,25] and is based on the resolution of the Generalized Riemann Problem
(GRP) [19] and on the polynomial reconstruction of variables [26,27,28]. In
the present approach, only the mass fraction equations are solved with the
third order ADER scheme for simplicity reasons, such as numerical cost. Let
us define the variable q = ρYk . The generalized Riemann problem is defined
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by the following Cauchy problem, in the one-dimensional case,

∂q

∂t
+

∂f(q)

∂x
= 0, with f(q) = qu

q(x, 0) =

{
pi(x), x < 0
pi+1(x), otherwise

(4)

pi(x) and pi+1(x) are the Newton polynomials of order K respectively in cells
i and i+1. In the conventional Godunov method, the variables are piecewise
constant functions, while they are now piecewise polynomial functions.
The solution of the Cauchy problem (4) is given by the time Taylor series
expansion:

qi+1/2(τ) = q(0, 0+) +
K∑

n=1

∂nq

∂tn
τn

n!
(5)

Where q(0, 0+) denotes the solution of the conventional Riemann problem.
The successive time derivatives have to be expressed in terms of the spatial
derivatives with the help of Equation (4):

∂q

∂t
+

∂f(q)

∂x
=

∂q

∂t
+

df(q)

dq

∂q

∂x
= 0,

∂2q

∂t2
+

d2f(q)

dq2
∂q

∂t

∂q

∂x
+

df(q)

dq

∂2q

∂t∂x
= 0.

Cross derivative appears in the second expression, and must be expressed.
To do this, the spatial derivative of the first equation of system above is
performed:

∂2q

∂t∂x
+

d2f(q)

dq2
(
∂q

∂x
)2 +

df(q)

dq

∂2q

∂x2
= 0.

As d2f(q)
dq2

= 0, simplifications appear and finally the time derivatives can be
expressed:

∂q

∂t
= −df(q)

dq

∂q

∂x
,

∂2q

∂t2
=

{
df(q)

dq

}2
∂2q

∂x2
.

These expressions are used in the time Taylor series expansion. However
space derivatives must be evaluated at each cell boundary. Evolution equa-
tions are considered for their computations. The same equation is used for
all the successive space derivatives, that is a version of Equation (4), with a
frozen Jacobian.

∂q
(k)
x

∂t
+

(
∂f

∂q

)
0

∂q
(k)
x

∂x
= 0. (6)

where q
(k)
x represents the kth spatial derivative and

(
∂f

∂q

)
0

the frozen Jaco-

bian, computed with the solution of the conventional Riemann problem. To
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express the fluxes at the cell edges, several Riemann problems have to be
solved, for the variable q and for its derivatives as shown in the Figure 7.

qx *
(k)

q
x
*

q*

x
i+1i i+1/2

t

u

Figure 7: Structure of the solution of the generalized Riemann Problem in (x-t) plane.

After solving the Generalized Riemann Problem the fluxes are computed
with (5). As shown latter, this scheme improves considerably transport equa-
tions solutions.

3.2 Algorithm summary and numerical examples

The ADER scheme can be summarized as follows:

• Compute the polynomial reconstruction of variables in each cell.

• Solve the conventional Riemann problem for the leading order solution.

• Solve the Riemann problem for spatial derivatives.

• Compute the flux time integral.

Results obtained with the third order ADER scheme are now compared with
those obtained with others schemes on a basic test problem. It consists in
the transport of a Gaussian profile at constant velocity. ADER computed
results are compared to MUSCL-Hancock [19] ones.

The transport velocity is equal to 1 m/s and the mesh contains 100 cells.
Periodic boundaries conditions are used in the computations. All the results
are compared with the exact solution. Figure 8 shows the Gaussian function
after 10 s of physical time. Figure 9 shows the results after 100 s. The
MUSCL Hancock method tends to deform the Gaussian function while the
third order ADER scheme conserves the correct shape.

These results clearly show that the ADER scheme is very accurate for the
present application involving long time dispersion phenomena.
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Figure 8: Gaussian profiles obtained with two different schemes (symbols) compared to
the exact solution (lines) at time t =10 s.
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Figure 9: Gaussian profiles obtained with two different schemes (symbols) compared to
the exact solution (lines) at time t =100 s.

4 Diffusion phenomena

As the gas species concentrations are now correctly computed, it is interesting
to consider physical diffusion phenomena such as the molecular one, or the
turbulent one, as well as heat diffusion. Details are given hereafter.

4.1 Mass diffusion

The formulation given in [29] is used, This formulation is generally associ-
ated to molecular diffusion, but it can be used to model turbulent diffusion.
A diffusive flux appears in the mass fraction evolution equations implying
an additional term in the total energy equation. Let us rewrite these two
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equations as,
∂ρYk

∂t
+∇. (ρuYk + Fk) = 0

,
∂ρE

∂t
+∇. (ρEu+ Pu+Q) = 0.

With the following definitions,

Fk =
N∑
l=1

Cdl, dl =
1

P
{∇Pl − Yl∇P} ,

N∑
k=1

Fk = 0,

Q =
N∑
k=1

hkFk, hk =
Pk

ρk
+ ek(ρk, Pk).

C is a diffusion coefficient, Yk is the mass fraction and Pk is the partial
pressure of species k. With these definitions, it is possible to show that the
system satisfies the entropy inequality.

∂ρs

∂t
+∇.

(
ρus+

Q

T
−

N∑
k=1

gk
T
Fk

)
= ṡ,

ṡ =
C

PT

∑N
k=1

1
ρk

{(∑N
l=1,l 6=k Yl

)
∇Pk − Yk

(∑N
l=1,l 6=k ∇Pl

)}2

≥ 0.

(7)

These terms allow to model turbulent diffusion with an appropriate diffusive
coefficient which can be evaluated using atmospheric stability consideration
but also mass deposition on solid surfaces with the help of mass exchange
coefficient at walls. Insertion of these dissipative terms in the discrete for-
mulation of heterogeneous media is addressed hereafter in the frame of heat
diffusion.

4.2 Heat transfer

To model heat transfer, conductive heat flux is added to the total energy
evolution equation which become,

∂ρE

∂t
+∇. (ρEu+ Pu+Q+ q) = 0.

Where q = −λ∇T denotes the heat flux and λ the thermal conductivity of
the gas mixture [52,53].

4.3 Integration of the diffusive terms

The heat and mass diffusion terms are integrated on the solid-gas control
volume depicted in Figure 2. Diffusion fluxes appear at cell boundaries, as
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well as exchange terms at the obstacles surfaces. Let us detail the calcula-
tions for the heat transfers, similar results being obtained for mass diffusion:

∆t

∫
V
qT dV = ∆t



{
{q∗f

T Sf}i+ 1
2
− {q∗f

T Sf}i− 1
2
+ {q∗s

T Ss}i+ 1
2
− {q∗s

T Ss}i− 1
2

}
.i

+
{
{q∗f

T Sf}j+ 1
2
− {q∗f

T Sf}j− 1
2
+ {q∗s

T Ss}j+ 1
2
− {q∗s

T Ss}j− 1
2

}
.j

+
{
{q∗f

T Sf}k+ 1
2
− {q∗f

T Sf}k− 1
2
+ {q∗s

T Ss}k+ 1
2
− {q∗s

T Ss}k− 1
2

}
.k

+
∑{

q∗f
T S0x

f,l − q∗f
T S0x

f,r + q∗s
T S0x

s,l − q∗s
T S0x

s,r

}
.i

+
∑{

q∗f
T S0y

f,l − q∗f
T S0y

f,r + q∗s
T S0y

s,l − q∗s
T S0y

s,r

}
.j

+
∑{

q∗f
T S0z

f,l − q∗f
T S0z

f,r + q∗s
T S0z

s,l − q∗s
T S0z

s,r

}
.k


(8)

The contribution of the internal obstacles is boxed in black in the previous
expressions. Let us give some details on the expression of the fluxes q∗T .
When dealing with fluid surfaces Sf , the heat fluxes can be written as follow
(in the x direction):

q∗
T .i = (q∗T )x = 2λ

Ti+1 − T ∗

∆x
,

with T ∗ the temperature at the cell edge. Using of flux continuity conditions,
we can write:

T ∗ =
λiTi + λi+1Ti+1

λi + λi+1

In the case of solid surfaces, or when dealing with internal obstacles, the heat
fluxes is expressed with the help of an exchange coefficient hc. For the sake
of simplicity, the details are given for the flux in the x direction.

(q∗T )x S = hcS(Ti − Twall)

T1  

T2

T
3

T
4

T53

1 

2

4

5

Figure 10: Schematization of a cell, containing different obstacles with their own tem-
peratures.

Where S denotes the exchange surface of a given face obstacle and hc the
conductive heat exchange coefficient (see Appendix A). The heat fluxes have
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to be summed up for all solid surfaces. Let Sobst denotes the total solid
surface of an internal obstacle,

Sobst = S0x
s,l + S0x

s,r + S0y
s,l + S0y

s,r + S0z
s,l + S0z

s,r.

For a cell i, j, k containing N internal obstacles of different temperatures Twall

(see Figure 10), the total heat flux reads,

N∑
l=1

hc (Sobst)l (Ti,j,k − (Twall)l).

The discrete relation (8) now becomes,

∆t

∫
V
qT dV = ∆t



{
{q∗f

T Sf}i+ 1
2
− {q∗f

T Sf}i− 1
2
+ {q∗s

T Ss}i+ 1
2
− {q∗s

T Ss}i− 1
2
+

∑{
q∗f
T S0x

f,l − q∗f
T S0x

f,r

}}
.i

+
{
{q∗f

T Sf}j+ 1
2
− {q∗f

T Sf}j− 1
2
+ {q∗s

T Ss}j+ 1
2
− {q∗s

T Ss}j− 1
2
+

∑{
q∗f
T S0y

f,l − q∗f
T S0y

f,r

}}
.j

+
{
{q∗f

T Sf}k+ 1
2
− {q∗f

T Sf}k− 1
2
+ {q∗s

T Ss}k+ 1
2
− {q∗s

T Ss}k− 1
2
+

∑{
q∗f
T S0z

f,l − q∗f
T S0z

f,r

}}
.k

+hc

N∑
l=1

(Sobst)l (Ti,j,k − (Twall)l)


.

We now address two phase flow modeling

5 Particles plume modeling

In this section, a new sub-model for dispersed suspensions dynamics is de-
rived. The conventional Eulerian formulation used in most two-phase dilute
suspensions codes is based on the pressureless gas dynamics equations cou-
pled to the gas dynamics equations through source terms. The pressureless
equations present at least two weaknesses. First, the system is hyperbolic
degenerate. Second, the model is unable to model particles jets dispersion
and in particular plume dynamics. Indeed, the particle phase system is cou-
pled to the gas phase system through drag, heat and mass transfer effects.
No turbulent effect nor dispersion effect are considered. To overcome these
drawbacks turbulent effects have been introduced in [44] yielding in a strictly
hyperbolic system able to model plumes with the help of a single turbulent
viscosity parameter. However, difficulties appeared for numerical resolution,
especially in severe conditions such as explosions. Indeed, the turbulent
sound speed present in the model is very low, resulting in particles vacuum
appearance yielding code failure. Also, the various boundary conditions need
very accurate treatment, even in zones where particles are absent (i.e. very
low concentration). To improve model robustness a semi-discrete asymptotic
analysis is achieved following the lines of [41]. The hyperbolic model of [44]
is used as starting point and a new reduced model is built, corresponding
to a viscous regularization of the pressureless gas dynamics equations. The
new model is easy to solve and particularly robust. It is able to reproduce
literature experimental data of plumes with a single viscosity parameter.
The hyperbolic turbulent model of dispersed flows is first recall from [44] and
then reduced with the semi discrete method.
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5.1 Hyperbolic turbulent model for particles flows

The model developed in [44] corresponds to the Euler equations where the
thermodynamic pressure is replaced by a turbulent pressure. There is also a
turbulent viscosity appearing in the momentum, and in the energy equations.
This turbulent formulation improves the mathematical features of the system
as well as the particles flow behavior. In particular, it allows particles jets
enlargement. This model has been validated with the help of experimental
data of [50] and [51]. The turbulent model reads:

∂ρp
∂t

+∇.(ρpup) = 0

∂ρup

∂t
+∇.(ρpup ⊗ up + PptI) = Fg→p +∇. (µt∇up)

∂ρpEp

∂t
+∇.(ρpEpup + Pptup) = upFg→p +∇.

(
µtu

T
p∇up

)
∂ρpep
∂t

+∇.(ρpupep) = 0

(9)

Where, ρp = αpρc represents the particles apparent density, defined as the
product of the particles volume fraction αp and the condensed phase density
ρc. The particle velocity vector is denoted by up while Ppt represents the
particles turbulent pressure. It is determined with the help of the turbulent
equation of state [45]:

Ppt = (γt − 1)ρpept.

The turbulent polytropic coefficient is equal to 3, 2 and 5/3 respectively for
1D, 2D and 3D flows. The turbulent particles energy is obtained from the
total energy definition and associated evolution equations (Total energy and
internal energy equations).

Ep =
‖up‖
2

+ ep(T ) + ept(ρp, Ppt).

The fluxes involves a turbulent pressure, making the equations system strictly
hyperbolic with the waves speeds up, up+cpt, and up+cpt. Turbulent square
sound speed is given by,

c2pt =
γtPpt

ρpt
.

On the right hand side, drag terms appear (details are given in Appendix
B). There is also turbulent tensor involving a single parameter µt. This
formulation is compatible with the second law of thermodynamics, as the
turbulent entropy equations reads,

∂ρpspt
∂t

+∇.(ρpupspt) = µtTr {(∇up).(∇up)
T} ≥ 0. (10)
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where spt represents the particles turbulent entropy, given by:

spt =
Ppt

(ρp)γt
.

Obviously, it implies positive entropy production for the system. The aim is
to reduce the model maintaining the same accuracy as reported in [44] while
improving its robustness.

5.2 Turbulent model reduction

The hyperbolic part of system (9) can be written as follows (one dimensional
case),

∂U

∂t
+

∂F

∂x
= 0

with,
U = (ρp, ρpup, ρpEp, ρpep)

T

F =
(
ρpup, ρpu

2
p + Ppt, ρpEpup + Pptup, ρpepup

)T
.

Let us consider the Godunov scheme,

Un+1
i = Un

i − ∆t

∆x

(
F ∗
i+1/2 − F ∗

i−1/2

)
(11)

with the Rusanov flux [42] at each cell boundaries.

F ∗ =
FR + FL

2
+

S

2
(UL − UR) (12)

The Rusanov numerical flux is considered for simplicity reasons. More so-
phisticated approximate Riemann solver can be considered as well. With
the Rusanov solver, the wave speed S is usually taken as the maximum wave
speed at a given cell boundary. The Godunov scheme (11) thus becomes:

Un+1
i − Un

i

∆t
+

1

2∆x
((Fi+1 + Fi)− (Fi + Fi−1))

+
1

2∆x

(
Si+1/2(Ui − Ui+1)− Si−1/2(Ui−1 − Ui)

)
= 0

Rearranging this expression, under the assumption that Si+1/2 = Si−1/2 = S
yields,

Un+1
i − Un

i

∆t
+

F n
i+1 − F n

i−1

2∆x
=

S∆x

2

Un
1+1 − 2Un

i + Un
i−1

∆x2
(13)
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This method is used to evolve the hyperbolic system (9), that can be ex-
pressed with the following set of variables: U = (ρp, ρpup, ρpEp, ρpep)

T , or

alternatively, U = (ρp, ρpup, ρpEp, ρpsp)
T

Lets consider the second option. After each hyperbolic step (13), the follow-
ing dissipation step is considered:

∂ρup

∂t
= ∇. (µt∇up)

∂ρpEp

∂t
= ∇.

(
µtu

T
p∇up

)
∂ρpspt
∂t

= µtTr
(
(∇up).(∇up)

T
)

Initially, the particles turbulent entropy is zero everywhere, at least for parti-
cles plumes. Then, the production occurs through the term µtTr

(
(∇up).(∇up)

T
)

and the turbulent entropy increases, creating the turbulent pressure that pro-
duces particles jets enlargement. However, the turbulent viscosity is weak
(µt = 2.10−3kg.m−1.s−1) resulting in low turbulent entropy and pressure
creation. Typical computed turbulent pressures are of the order of a few
Pascals. In the asymptotic limit of vanishing turbulent viscosity, the entropy
equation reduces to:

∂ρpspt
∂t

= 0.

Consequently, the turbulent pressure vanishes too. In this limit of vanishing
turbulent viscosity, the continuous limit of the discrete equation (13) reads:

∂ρp
∂t

+∇. (ρpup) = Dp∆ρp
∂ρpup

∂t
+∇. (ρpup ⊗ up) = Dp∆(ρpup) + Fg→p

∂ρpEp

∂t
+∇. (ρpEpup) = Dp∆(ρpEp) + Fg→p.up

(14)

Diffusion terms appear with conservative variables as arguments and the
same diffusion coefficient for all equations. Obviously, these equations can
be written in divergence form:

∂ρp
∂t

+∇. (ρpup −Dp∇.ρp) = 0

∂ρpup

∂t
+∇. (ρpup ⊗ up −Dp∇.(ρpup)) = Fg→p

∂ρpEp

∂t
+∇. (ρpEpup −Dp∇(ρpEp)) = Fg→p.up

(15)

This system corresponds to the pressureless Euler equations with turbulent
diffusion. Obviously, it is reminiscent of artificial viscosity formulations.
The key point is related to the second law of thermodynamics associated to
this model. As mentioned in [41] with the Euler equations of gas dynamics
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as example, augmented by the same artificial viscosity terms, there is no
hope that the second law of thermodynamics be fulfilled in the local sense.
However, similarly as artificial viscosity numerical methods, discontinuities
are captured and the second law of thermodynamics is fulfilled in the weak
sense, which corresponds to the correct formulation of the second principle of
thermodynamics. Here, as System (9) is in local agreement with the second
law of thermodynamics, System (15) is necessarily in agreement too with the
second law, in the global sense.
A resolution method for the pressureless model is detailed in [46], where
the model is studied without artificial diffusion. In the right hand side of
the equations, the viscous drag force Fg→p appears as well as the turbulent
diffusion terms for which the diffusion coefficient Dp must be determined.
Its determination is addressed with the help of experiments.

5.3 Turbulent coefficient determination

The aim is to determine the diffusion coefficient Dp. In [44], a unique value
of turbulent viscosity was determined (µt = 2.10−3 kg.m−1.s−1) to reproduce
the experimental dispersed particle jets of [50] and [51] with very good agree-
ment. The same experiments are used to determine the turbulent diffusion
coefficient of the present reduced model.

5.3.1 Comparisons with experimental data

0 0 0 01 1

C1 C2 C3

0.15m

1.30m

air
Two-phase solid-gas jet

Injector

Figure 11: Schematic representation of the two-phase jet experimental configuration.

Two different set of experimental data are used to study particles jets dis-
persion. Details on the experimental facilities and configurations are given
in [50] and [51]. These experiments are interesting as very different materials
are used, with different densities and particle sizes. A schematic representa-
tion of the studied configuration is shown in Figure 11.
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Tsuji [51] Hishida [50]
Particles diameters (µm) 500 64
Material density (kg/m3) 1020 2590
Injection velocity (m/s) 24 30
Apparent density at injector(kg/m3) 0.2 1.0
Injector diameter D (mm) 20 13

Table 1: Experimental configuration data from [50] and [51].

As shown in Figures 12 and 13, good agreement is obtained for both
sets of experimental data. It is worth to mention that the product of the
diffusion coefficient by the apparent density at injection is the same for both
experiments and is also very close to the turbulent viscosity used in [44].
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Figure 12: Computed results in lines versus experimental data of [51]. Normalized
apparent density ρp/ρp0 cross cut at abscissa C1 = 4D, C2 = 10D and C3 = 15D
(with ρp0 the apparent density along the centerline). The jet width increases during
its progression. The diffusion coefficient in the numerical model is such that Dpρp =
1.5 10−3kg.m−1.s−1 .

To appreciate the effects of turbulent diffusion in the pressureless equations,
we compare the results obtained using the turbulent model of [44] with those
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Figure 13: Computed results in lines versus experimental data of [50]. Normalized appar-
ent density ρp/ρp0 cross cut at abscissa C1 = 10D, C2 = 20D and C3 = 30D (with ρp0 the
apparent density along the centerline). The jet width increases during its progression.
The diffusion coefficient in the numerical model is again Dpρp = 1.5 10−3kg.m−1.s−1.
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Figure 14: Comparison of the results obtained with the different models on the config-
uration of [51].
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obtained with the conventional pressureless model and the results with the
reduced model in the configuration of [51]. The comparison is shown in
Figure 14. The reduced model and the parent turbulent one gives similar
results. Both models allow jet enlargement with good agreement with the
experimental results while the jets computed with the pressureless model
shows no enlargement.

6 Topography

The discrete formulation of heterogeneous media described in section 2 and
its various extensions described in the preceding sections are extended to the
consideration of realistic topographies such as those of urban and country
places.

6.1 Urban places

Figure 15: Representation of the various files and format treatment to get a readable
file for a CFD code, starting from a shapefile.
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It is necessary to have a ’shapefile’ containing data associated to the con-
sidered topography, these files can be bought or built. Real topography is
generated using a Geographic Information System (GIS). Several softwares
are able to edit and manage shapefiles, such as for example Quantum GIS.
In this frame, buildings are represented as polygones. The first step in the
present context is related to the geometry building for the CFD code with a
preprocessing tool, based on the treatment of gray levels. The procedure is
schematized in the Figure 15.

The aim is to rebuilt the urban geometry using the gray levels, each one
corresponding to an elevation. To do this, the gray picture is exported to an
ASCII file containing the gray level of each pixel with the help of the ImageJ
free software [32]. The resulting file is then treated by another firmware code
which writes a new ASCII file considering the CFD code mesh (cartesian)
and transforming the gray levels in real elevations. The final file is thus
obtained and is readable by the HI2LO code.

6.2 Countries and large scales

When dealing with large scales, topography is built with the help of numeri-
cal elevation data available on the web (USGS, IGN). These files are usually
not adapted to Cartesian grids computations. In this case too, a preprocess-
ing tool has been developed to create files readable by the final code. The
aim is to obtain a readable file for different type of elevation data.

The procedure is summarized in Figure 16. The preprocessing tool al-

(readable by HI2LO)
Final file Interpolation on 

the desired mesh

Initial data 
(elevation data)

Research of the domain dimensions
(size, origin,...)

Passage to a rectangular cartesian grid
(points are added if necessary)

Targeting of a specific area

Preprocessing tool

Figure 16: Procedure to build the ASCII file readable by HI2LO.
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lows to add geographical boundaries at the reconstructed map and thus to
focus on a specific area of it. Thus a complete map, or a part of it, can
be reconstructed . Figure 17 shows the Martinique island map which has
been rebuilt. The preprocessing tool is thus able to build a large range of

Figure 17: Representation of the Martinique island from an elevation file.

topographies using different kind of elevation data: xyz files, digital elevation
models, or shapefiles. In the following section, computational examples in
3D are shown.

7 Examples

In this section, various configurations are considered as computational ex-
amples.

7.1 Explosion in urban place

The first example corresponds to a simulation of a 100 kg TNT charge explo-
sion in a street in the city of Marseille (France). The explosion is modeled as a
constant volume explosion, corresponding to the initial pressure of 85711 Bar
and density of 1604kg/m3. Detonation products are considered as ideal gases
with γ = 3, even if this assumption is inacurate at high density levels, that
corresponds to very short time events. Topography of the neighborhood has
been modeled with a shapefile. Solid particles are present around the charge
in this computation, the features of these particles being the following,

D = 30µm, ρp = 3kg/m3, ρ∗ = 1200kg/m3,

with D, the particles diameter, ρp the apparent density and ρ∗, the real den-
sity of the material.

Figure 18, shows the detonation product mass fraction at different times
and Figure 19 shows the particles apparent density at several instants. Figure
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Figure 18: Contours of the detonation products mass fraction at times : 0.02s, 0.8s, 1.8s
and 3.9s

Figure 19: Contours of the particle apparent density at different times: 0.02s, 0.8s, 1.8s
and 3.9s

20 shows the pressure contour at six instants giving the shock wave location
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Figure 20: Contours of the pressure at several instants: 20 ms, 40 ms, 60 ms, 80 ms,
100 s and 140 ms.

in the three dimensional domain.
In Figure 21, cut view of pressure contours at 1 m high are shown. We can
see the propagation of the shock wave and its interaction with the buildings.

Figure 21: Volume representation of the pressure at four instants: 20 ms, 40 ms, 60 ms
and 80 ms.

These computations are done without heat and mass exchanges with the
buildings.
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7.2 Gas dispersion on large domains

In this second example, the formation and dispersion of a gas chemical species
cloud is studied. The topography of the domain under consideration is rebuilt
with the help of digital elevation data. A part of the Umnak island (Alaska,
USA) as shown in Figure 22 is considered.

Figure 22: Upper left: Domain under consideration (16 km long, 8 km wide and 4 km
high). Upper right: direction of the wind and position of the tank (White circle). On
bottom: Initial conditions for the pressure.

The aim relies in the computation of the formation and propagation of a gas
cloud issued of a ruptured vessel. An internal obstacle embedded in the mesh
is considered with an outflow connected to a tank during a limited time with
the following boundary conditions:

P0 = 150 Bar, T0 = 600K,
Yair = 0.98, YCO2 = 0.02.

After that time, the tank boundary condition becomes a simple wall. Atmo-
spheric boundary conditions for the wind are supposed to vary according to
the following profile [34],[35],[33]:

u(z) = u(z0)

(
z

z0

)0.29

,

where u(z0) = (6 m/s, 2 m/s, 0)t corresponds to the velocity vector at the
altitude z0 = 100 m. Conditions of stratified atmosphere are used as initial
conditions, the various flow variables depending on the height z. To do this,
an adiabatic transformation is considered between the ground and the top
of the domain. The final physical time is 13 min 20s. Figures 23 and 24
show the gas plume at different instants. These pictures show the plume
dispersion which is subjected to the topography of the domain and to the
wind profile.
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Figure 23: Contours of CO2 mass fraction at different times: t=40 s, t=100s, t=220s,
t=420s, t=620s and t=800 s. Gas injection is interrupted after 200 s.

Figure 24: Contours of CO2 mass fraction at different times, top view at times: t=40 s,
t=100s, t=220s, t=420s, t=620s and t=800 s.

8 Conclusion and future works

In this paper a new computational fluid dynamics code for safety analy-
sis is presented. It is able to consider highly heterogeneous media such as
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cities, hilly grounds or other geometrical domains. Its structure and for-
mulation enable the consideration of complex domains quite easily. The
physics considered at present corresponds to gas mixtures, with transport,
wave propagation, heat and mass diffusion, at both molecular and turbulent
scales, as well as particles cloud dynamics. The simulation code is parrallel.
It is planned to extend its capabilities to low Mach number flow conditions
[36,37,38]. It is also planned to couple this code with other multiphase flow
codes considering advanced detonation modeling [40,39] to achieve accurate
explosion computations, in particular in highly dynamics conditions, for time
scales less than 1ms.
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A Viscous drag

The phases motion is coupled through viscous drag forces. A Stokes drag
type correlation is used. This force reads for one particle of constant radius
R:

fg→p = 6πµR(u− up), (16)

with µ the gas viscosity. Let Rep be the particle Reynolds number (based on
the relative velocity between both phases) and Cd a drag coefficient depend-
ing on the flow regime [47].

Rep =
2Rρ‖u− up‖

µ
,

Cd =


24

Rep

(
1 + 0.15Re0.687p

)
if Rep < 800,

0.438 otherwise.

Using the volume fraction of the diluted phase, and the expression of the
particle Reynolds number, the viscous drag force for a cloud of particles
reads:

Fg→p =
3αpCdρ‖u− up‖(u− up)

8R
. (17)

With,

αp =
ρp
ρc
,

where ρp corresponds to the real density of the material constituting the
particles, and ρp the apparent density of the particles.

B Heat exchange coefficient

In order to evaluate the exchange coefficient h, a correlation based on the
Nusselt number is used,

Nu =
hL

λ
=⇒ h =

λNu

L
,

Where L is a characteristic length of the system and λ is the thermal conduc-
tivity. The Nusselt number is expressed with two dimensionless number, the
Reynolds number and the Prandtl number. There exists many correlations
of Nusselt number. These correlations depend on the flow configuration. In
the present paper, we take the example of forced convection,{

Nu = 0.664Re1/2Pr1/3 if Re < 5.105,
Nu = 0.0365Re4/5Pr1/3 otherwise.
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It is also possible to express a radiative heat flux (denoted by φ) using the
Stefan law,

φ = εσS(T 4
wall − T 4

i ),

where, σ is the Stefan-Boltzmann constant and ε, the surface emissivity
(depending on the material). It is possible to reduce this last expression when
the difference between the wall temperature and the ambient temperature is
weak,

φ = 4εσST 3
a (Twall − Ti),

where Ta corresponds to averaged temperature. Finally a radiative exchange
coefficient can be expressed as follows,

hr = 4εσT 3
a .

Using all these considerations, the overall exchange coefficient is the follow-
ing:

hc =
λNu

L
+ 4εσT 3

a .
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