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All speed flows and in particular low Mach number flow algorithms are addressed for the
numerical approximation of the Kapila et al. [1] multiphase flow model. This model is valid
for fluid mixtures evolving in mechanical equilibrium but out of temperature equilibrium
and is efficient for material interfaces computation separating miscible and non-miscible
fluids. In this context, the interface is considered as a numerically diffused zone, captured
as well as all present waves (shocks, expansion waves). The same flow model can be
used to solve cavitating and boiling flows [2]. Many applications occurring with liquid–
gas interfaces and cavitating flows involve a very wide range of Mach number, from 10−3

to supersonic (and even hypersonic) conditions with respect to the mixture sound speed.
It is thus important to address numerical methods free of restrictions regarding the Mach
number.
To do this, a preconditioned Riemann solver is built and embedded into the Godunov
explicit scheme. It is shown that this method converges to exact solutions but needs too
small time steps to be efficient. An implicit version is then derived, first in one dimension
and second in the frame of 2D unstructured meshes. Two-phase flow preconditioning
is then addressed in the frame of the Saurel et al. [3] algorithm. Modifications of the
preconditioned Riemann solver are needed and detailed. Convergence of both single phase
and two-phase numerical solutions are demonstrated with the help of single phase and
two-phase steady nozzle flow solutions. Last, the method is illustrated by the computation
of real cavitating flows in Venturi nozzles. Vapour pocket size and instability frequencies
are reproduced by the model and method without using any adjustable parameter.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Liquid–gas mixtures and interfacial flows arise in many natural and industrial situations occurring in fluid mechanics,
nuclear, environmental and chemical engineering. Many computational approaches consider the two fluids as incompressible
(Hirt and Nichols [4], Lafaurie et al. [5], Menard et al. [6] to cite a few). High Mach number flows with material interfaces
have also been the subject of important efforts, with various approaches: Front Tracking [7], Level Set and Ghost Fluid
[8], diffuse interfaces [9,10,3] and others. Between incompressible and highly compressible fluids, flows with phase change
involve both compressible and incompressible effects. An example of boiling liquid–gas flow modelling is given in [11]. In
cavitation zones, the liquid–gas mixture is highly compressible as well as the pure gas zones while the pure liquid zones are
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weakly compressible. In phase change applications gas compressibility is of importance. In cavitating flows, compressibility
of all phases is important as the liquid phase change occurs under liquid expansion effects. Moreover, when liquid–gas
mixtures appear, the sound propagates with the mixture sound speed [12], which has a non-monotonic behaviour with
respect to the volume fraction, resulting in very low sound speed, of the order of a few meters per second. There is thus
no difficulty to reach hypersonic flow conditions with liquid–gas mixtures. Consequently, it is important to build numerical
methods able to deal with incompressible flows, transonic flows and even hypersonic flows. This issue has been addressed
intensively in the context of single phase flows since Harlow and Amsden [13] extending incompressible flow solvers to
compressible one and Turkel [14] extending compressible flow solvers to the incompressible limit. Multiphase flows in the
low Mach regime has been more addressed by methods issued from incompressible flows [15,16]. However, this poses
difficulties when wave dynamics is present, as incompressible flow solvers are not conservative in the compressible flow
sense. Also, these methods have difficulties when large density ratios are present. At liquid–gas interfaces, the density ratio
may exceed several thousands. Turkel [14] approach, dealing with incompressible flow limit with compressible flow solvers,
seems more appropriate. Two-phase cavitating flow models have been addressed in this direction [17,18]. The same kind
of approach is considered in the present work. More precisely, we address both liquid–gas interface and cavitating flows
with the same theoretical flow model (Kapila et al. [1]) and consider a flow solver close to the preconditioning method of
Guillard and Viozat [19]. This approach has some advantages:

– The interfaces are handled routinely, like any point of the flow.
– The dynamic appearance of interfaces (not present initially) is possible thanks to the volume fraction equation structure

that allows volume fraction to increase in zones where the velocity divergence is non-zero. This occurs typically in
expansion and compression waves and is of major importance in cavitating flows.

– Phase transition can be considered in a thermodynamically consistent way [2].
– The phases mass, mixture momentum and mixture energy are expressed in conservative form, insuring correct wave

dynamics in pure fluid zones.
– The addition of surface tension [20] can be done quite easily. In other words, capillary effects are modelled with the

help of a capillary tensor and there is no need to resolve the interface structure.

This approach has obviously some drawbacks:

– The interfaces can be excessively diffused, especially when dealing with long time evolutions. But this is exactly the
same drawback as contact discontinuity smearing in gas dynamics computations. Efforts to reduce numerical diffusion
have been done recently by Kokh and Lagoutière [21], Shukla et al. [22] and So et al. [23].

– Non-conservative equations are present and the numerical approximation of non-conservative terms poses difficulties
in the presence of shocks [24,25,3,26,27].

– The building of all Mach number method for this kind of hyperbolic flow model is not an easy task, as it will be shown
latter.

As the flow model is conservative regarding the phases mass equations, mixture momentum and mixture energy and
since the system is hyperbolic we will adopt a method issued from compressible flow dynamics [14,28,19]. This choice is
motivated by the importance of the pressure waves present in many applications, by the presence of huge density ratios
at interfaces, that are easier to handle with discontinuity capturing schemes and by the presence of huge Mach number
variations. This is mandatory for specific applications, such as:

– liquid–gas flows in nozzles and Venturi tunnels,
– high performance turbo-pumps where cavitation appears,
– propellers,
– water waves breaking,
– flash vapourization.

The key issue when these applications are addressed with the Kapila et al. [1] model is related to the numerical approx-
imation of the flow model in all speed conditions. This issue is addressed in the frame of Turkel, Guillard and Viozat [14,19]
formulation.

From a theoretical standpoint, mathematical analysis of the low Mach number limit for classical solutions of the com-
pressible Navier–Stokes has been investigated by many authors (for example, Ebin [29], Klainerman and Majda [30], Schochet
[31], Metivier and Schochet [32]). Alazard [33] proved, in a rigorous analysis and general context, the existence of uniformly
bounded incompressible limit of the full Navier–Stokes equations. The existence time is there independent of the Mach, the
Reynolds and the Peclet numbers and thereby includes the limit for the Euler equation as well. On this theoretical basis,
we first consider the single phase Euler equations and derive an approximate preconditioned Riemann solver. When the
Godunov scheme is used with this Riemann solver, convergence to the exact nozzle flow solution is obtained. However,
the method requires small time steps (much smaller that the conventional CFL restriction) to be stable. We thus consider
implicit formulation to overcome this restriction. The HLLC solver of Toro et al. [34] is considered and a Taylor expansion is
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done to express its time variation. The method is first presented in the context of the one-dimensional Euler equations and
then extended to the one-dimensional Kapila et al. [1] model. After validation against the exact one-dimensional two-phase
nozzle flow solution, 2D extension of the algorithm for unstructured meshes is presented. Computational examples are
shown in 2D. In particular, a real cavitating flow in 2D Venturi channel is examined. With the help of the new method, very
good agreement with the measured cavitation pocket size and detachment frequency is obtained without having recourse
to any model or method parameter.

The paper is organized as follows. In Section 2 the Kapila et al. [1] flow model under interest is presented. Its pressure
non-equilibrium analogue [3] is presented in the same section as this formulation is more suited to numerical resolution
with the approach given in the same reference. In Section 3, the low Mach behaviour of a conventional Godunov type
scheme is shown using a single phase nozzle flow solution. In Section 4 the low Mach single phase Riemann solver is
presented. It uses the preconditioned Euler equations in the Riemann problem resolution only, while the conventional
conservative formulation is used for the solution update. Its extension to the two-phase flow model is then examined.
Section 5 deals with time implicit formulation of the preconditioned Godunov method in order to overcome severe stability
restrictions. Computational example and validations against experiments are given in Section 6. Conclusions are given in
Section 7.

2. Flow model

We consider the two-phase flow model of Kapila et al. [1]. It describes multiphase mixtures evolving in mechanical
equilibrium (equal pressures and equal velocities). It is particularly suited to materials interfaces computations, considered
as numerical diffusion zones (see for example Saurel et al. [3]). The Kapila et al. [1] model reads:

∂α1

∂t
+ u ·grad(α1) = K div(u) where K = ρ2c2

2 − ρ1c2
1

ρ1c2
1

α1
+ ρ2c2

2
α2

,

∂α1ρ1

∂t
+ div(α1ρ1u) = 0,

∂α2ρ2

∂t
+ div(α2ρ2u) = 0,

∂ρu

∂t
+ div(ρu ⊗ u + P ) = 0,

∂ρE

∂t
+ div

(
(ρE + P )u

) = 0. (1)

ck represents the sound speed defined by c2
k = ∂ pk

∂ρk

)
sk

, k = 1,2, P represents the mixture pressure, E represents the mixture
total energy, αk represents the phase volume fraction, ρk represents the phase density.

The mixture sound speed is given by the Wood [12] formula and is a consequence of system (1):

1

ρc2
= α1

ρ1c2
1

+ α2

ρ2c2
2

. (2)

In the absence of shocks, system (1) can be complemented by the following entropy equations:

∂α1ρ1s1

∂t
+ div(α1ρ1s1u) = 0,

∂α2ρ2s2

∂t
+ div(α2ρ2s2u) = 0. (3)

The thermodynamic closure is achieved with the help of the mixture energy definition,

ρe = α1ρ1e1 + α2ρ2e2

and the pressure equilibrium condition: p1 = p2.
In the present work, the Stiffened-Gas (SG) EOS is considered for each phase:

pk = (γk − 1)ρkek − γk P∞,k. (4)

γk and P∞,k are parameters of the EOS, obtained from reference thermodynamic curves, characteristic of the material and
transformation under study. See Le Métayer et al. [35] for details.

In the context of fluids governed by SG EOS (4), the mixture EOS reads:

P =
ρe − (α1γ1 P∞,1

γ1−1 + α2γ2 P∞,2
γ2−1

)
α1

γ1−1 + α2
γ2−1

. (5)

Obviously, other convex EOS can be considered instead of (4) for the building of (5). The numerical approximation of
the Kapila et al. [1] model is addressed in the frame of Godunov type finite volume schemes. To overcome the difficulties
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related to the approximation of the non-conservative term K div(u) in the volume fraction equation of system (1) a pressure
non-equilibrium system (6) is considered during the transport step and a proper projection is achieved to recover the target
model (1). The pressure non-equilibrium system reads:

∂α1

∂t
+ u ·grad(α1) = μ(p1 − p2),

∂α1ρ1

∂t
+ div(α1ρ1u) = 0,

∂α2ρ2

∂t
+ div(α2ρ2u) = 0,

∂α1ρ1e1

∂t
+ div(α1ρ1e1u) + α1 p1 div(u) = −pIμ(p1 − p2),

∂α2ρ2e2

∂t
+ div(α2ρ2e2u) + α2 p2 div(u) = pIμ(p1 − p2),

∂ρu

∂t
+ div(ρu ⊗ u + P ) = 0,

∂ρE

∂t
+ div

(
(ρE + P )u

) = 0 (6)

where μ represents the pressure relaxation coefficient, pI represents the interfacial pressure defined by pI = Z1 p2+Z2 p1
Z1+Z2

,
with Zk = ρkck , the phase k acoustic impedance. ek and pk represent the phase k internal energy and pressure respectively.

It is important to note that in this system the internal energies of each phase are independent variables and their
evolution is described by two additional equations. The mixture pressure is now related to the phases’ internal energies:

P = α1 p1 + α2 p2 (7)

where p1 = p1(ρ1, e1) and p2 = p2(ρ2, e2).
The non-equilibrium system (6) is hyperbolic and appropriate to overcome the difficulties related to the discretization of

the volume fraction equation, in particular regarding positivity issues. System (6) is used to reach solutions of system (1) in
the limit of infinite pressure relaxation, i.e. when μ tends to infinity.

It is worth to mention that system (6) is overdetermined. Indeed, the total energy equation is a consequence of the
phases energy equations and the mixture momentum one. This over-determination will be used to correct the inaccuracies
appearing during the numerical integration of αk pk div(u), the non-conservative terms of the internal energy equations [3].
Overdetermined systems have already been considered for numerical approximation issues in different contexts by Babii et
al. [36] for example.

Let us mention that this formulation is needed not only when two-phase shock waves are present, but also when
cavitation is considered, as in the present paper. Indeed, when cavitation comes from geometrical effects, closed to walls, a
normal velocity discontinuity appears. Indeed, wall boundary conditions are solved with the help of a mirror state, resulting
in unbounded velocity divergence and undefined non-conservative product in the volume fraction equation of system (1).
It means that the building of a positive scheme based on system (1) in realistic cavitating flow conditions is an issue.
Formulation (6) overcomes this difficulty. Also, many practical situations of cavitating flow involve huge Mach number
variations, and robustness of the algorithm is mandatory. Formulation (6) is particularly robust. The algorithm based on the
overdetermined formulation (6) can be summarized as follows. System (6) is rearranged as follows:

∂U

∂t
+ div

(
F (U )

) + H(U )div(u) = μ(p1 − p2)S(U ) (8)

where,

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1
α1ρ1
α1ρ2
ρu
ρE

α1ρ1e1
α2ρ2e2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, F (U ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1u
α1ρ1u
α1ρ2u

ρu ⊗ u + P
(ρE + P )u
α1ρ1e1u
α2ρ2e2u

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, H(U ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−α1
0
0
0
0

α1 p1
α2 p2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and S(U ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0

−pI

pI

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (9)

Each integration time step is structured as follows [3]:

Initialization: At a given time step, the flow is in mechanical equilibrium, in particular in pressure equilibrium. The set of
variables is given by:

U n ≡ U
(

V n) with V n = (
αn

1,ρn
1 ,ρn

2 , un, en
1

(
ρn

1 , Pn), en
2

(
ρn

2 , Pn), En)T
.
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Fig. 1. Nozzle connected to a tank at the inlet and to a prescribed pressure at the outlet.

Non-equilibrium evolution: The pressure relaxation terms are removed (μ = 0) and the hyperbolic pressure non-
equilibrium system is solved. At the end of this evolution step a temporary flow state is determined:

∂U

∂t
+ div

(
F (U )

) + H(U )div(u) = 0 �→ Ũ
n+1 ≡ U

(
Ṽ

n+1)
with Ṽ

n+1 = (
α̃n+1

1 , ρ̃n+1
1 , ρ̃n+1

2 , un+1, ẽn+1
1 , ẽn+1

2 , En+1). (10)

Projection to pressure equilibrium: This step deals with the projection of the previous pressure non-equilibrium state onto
a pressure equilibrium one:

∂U

∂t
= μ(p1 − p2)S(U ) �→ U n+1 ≡ U

(
V n+1)

with V n+1 = (
αn+1

1 ,ρn+1
1 ,ρn+1

2 , un+1, en+1
1

(
ρn+1

1 , Pn+1), en+1
2

(
ρn+1

2 , Pn+1), En+1).
This is done by determining the asymptotic solution of the remaining relaxation ODE system in the limit μ → +∞.

The asymptotic state is determined by the resolution of a non-linear algebraic equation. Details may be found, for example,
in [3]. In particular, it is shown in Appendix B of this reference, that this strategy results in approximating solutions of (1).

It is worth to mention that:

– The equilibrium pressure pn+1 is determined from the mixture EOS (5), based on the mixture total energy En+1, for
which there is no conservation issue.

– Both steps in this strategy preserve volume fraction positivity.
– Both steps preserve phases’ mass conservation, mixture momentum and energy conservation.
– The entropy inequality is also preserved during each step.

This algorithm has shown robustness, accuracy and versatility for various flow models ranging from interfaces, supercavi-
tating flows [2], detonation waves [37], powder compaction [38], solid–fluid coupling [39] in severe high speed conditions.
We address here arbitrary velocity flow conditions and particularly low Mach number conditions.

3. Low Mach behaviour of conventional Godunov type schemes

To illustrate the fundamental difficulties of low Mach number computations, we consider a basic situation of 1D nozzle
flow. We first examine the behaviour of the Godunov method in this limit for single phase liquid flows. We consider the
nozzle geometry given in Fig. 1 connected to an inlet imposed mass flow rate m0 and imposed stagnation enthalpy H0 and
to a prescribed outlet pressure, pout . The first-order Godunov method with HLLC approximate Riemann solver is used to
compute the smooth varying nozzle flow. Details are given in Appendix A. Computations to steady state are achieved with
uniform meshes of different sizes. The exact quasi-1D solution is computed using the method described in [40].

All computations are achieved with a time step satisfying CFL = 0.5. The outlet pressure boundary condition and the
inlet stagnation enthalpy and mass flow rate are solved by the method of Osher and Chakravarthy [41]. The geometrical
data and boundary conditions for the liquid flow are:

– Inlet cross section: 0.14657 m2.
– Throat cross section: 0.06406 m2.
– Outlet cross section: 0.14657 m2.

The nozzle profile is piecewise linear with respect to the surface area. The nozzle length is 1 m while the throat is
located 0.5 m from the inlet. The boundary conditions are given by:⎧⎨⎩m0 = 7000 kg m−2 s−1, H0 = P0 + γ P∞

(γ − 1)ρ0
+ P0

ρ0
+ m2

0

2ρ0

with P0 = 0.1 MPa, ρ0 = 1000 kg m−3, γ = 4.4, P∞ = 600 MPa.

The exact and computed velocity and pressure profiles are shown in Fig. 3 for various mesh sizes: 100, 1000 and 10 000 cells.
The computed and exact velocity profiles are in excellent agreement but the pressure and density fields present large

errors. Regarding the pressure field, the jump at throat is not a computational artefact due to a lack of “well balance”
effect in the Riemann solver, boundary conditions or slope singularity at throat. The 500% error is strictly due to density
fluctuations combined with the SG EOS (4) stiffness. Mesh refinement analysis illustrates the convergence issue, that is
clearly not a consistence one. Quasi-convergent results are obtained with 10 000 cells (Fig. 2). Table 1 shows computational
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Fig. 2. Computed velocity, pressure and density profiles in the Laval liquid nozzle flow with 100, 1000 and 10 000 cells against the compressible exact
solution. The Godunov scheme solutions present severe fluctuations. The error decreases under mesh refinement.

Table 1
Computational time versus mesh size for the 1D liquid nozzle
flow test.

Mesh size Calculation time

100 cells 20 s
1000 cells 33 min 56 s
10 000 cells 59 h 16 min 48 s
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times to reach steady state inside the piecewise linear nozzle versus mesh size. It is clear that the method is extremely
expensive, even for 1D computations.

4. Improving numerical convergence at low Mach number limit

As single phase computations have shown serious issues under low Mach number conditions (Fig. 2), it is clear that
efforts have to be done to improve the asymptotic behaviour of Godunov type schemes at low Mach. This has to be done
prior to consider numerical approximation of the two-phase flow model (1). We thus address the numerical approximation
of the Euler equation first. The two-phase flow model (1) will be addressed in a second part. For the sake of simplicity, the
analysis is carried out in 1D, multi-D extension being addressed later.

4.1. Low Mach number preconditioning

As shown previously, the conventional Godunov method converges to the exact solution under low Mach conditions if
very fine resolution is used. Such meshes being impracticable for multi-dimensional applications, modifications have to be
done. We are seeking a numerical method valid for all speeds flows, from transonic to low Mach number. In this area, Turkel
[14] established a preconditioning method to guarantee convergence of the results at steady state. Unsteady extensions have
been done with several approaches. Choi and Merkle [28] introduced an approach with two time steps, an artificial one and
a physical one. An analysis of various compressible flow approaches for unsteady flows is given in [42]. Recent extension to
discontinuous Galerkin methods is given in [43]. Moreover, extension of dual time stepping methods to cavitating two-phase
flows has been addressed by several authors [17,18,44]. Another approach was derived by Guillard and Viozat [19] where
only the flux numerical dissipation was modified to reach convergence in both low and high Mach number conditions.
This approach is considered in the present work as it guarantees conservation and convergence even when discontinuities
such as shock waves are present. Indeed, the conservative formulation of the equations as well as the equation of state are
unmodified. This results in unchanged jump conditions across the various waves and correct wave speed computation.

This strategy is presented hereafter in the context of the Euler equations. The HLLC Riemann solver of Toro et al. [34]
is considered and wave speeds for all Mach number flow situations are estimated following Murrone and Guillard [45] and
Braconnier and Nkonga [46] with the help of the following analysis. For the approximate Riemann problem resolution only
(not for the solution update), the Euler equations are considered under primitive variables formulation:

∂ρ

∂t
+ ρ

∂u

∂x
+ u

∂ρ

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂ p

∂x
= 0,

∂ p

∂t
+ u

∂ p

∂x
+ ρc2 ∂u

∂x
= 0. (11)

4.1.1. Dimensionless variables
These equations are expressed in dimensionless variables with the help of the following definitions: ρ = [ρ]ρ̃ , u =

[u]ũ, p = [p]p̃, x = [x]x̃ and t = [t]t̃ , where [ f ] represents a characteristic scale of the corresponding variable and f̃ the
dimensionless one. System (11) becomes:

∂ρ̃

∂ t̃
+ ρ̃

∂ ũ

∂ x̃
+ ũ

∂ρ̃

∂ x̃
= 0,

∂ ũ

∂ t̃
+ ũ

∂ ũ

∂ x̃
+ [p]

[ρ][u]2ρ̃

∂ p̃

∂ x̃
= 0,

∂ p̃

∂ t̃
+ ũ

∂ p̃

∂ x̃
+ [ρ][c]2

[p] ρ̃ c̃2 ∂ ũ

∂ x̃
= 0. (12)

A pressure scaling has to be defined. At least, three options are possible:

– An ‘acoustic’ scaling, corresponding to,

[p] = [ρ][c][u]. (13)

– A ‘dynamic pressure’ scaling, corresponding to,

[p] = [ρ][u]2. (14)

– A ‘bulk modulus’ scaling, corresponding to,

[p] = [ρ][c]2. (15)
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The first two scalings lead to wrong wave speed propagation and are, consequently, rejected. Indeed, it is not possible to
recover an admissible entropy equation from the mass and pressure equations. Should, otherwise, the equation of state be
changed. Choosing the last one results in the following system:

∂ρ̃

∂ t̃
+ ρ̃

∂ ũ

∂ x̃
+ ũ

∂ρ̃

∂ x̃
= 0,

∂ ũ

∂ t̃
+ ũ

∂ ũ

∂ x̃
+ 1

M2ρ̃

∂ p̃

∂ x̃
= 0,

∂ p̃

∂ t̃
+ ũ

∂ p̃

∂ x̃
+ ρ̃ c̃2 ∂ ũ

∂ x̃
= 0. (16)

As shown in the next subsection, the ‘bulk modulus’ scaling formally admits the incompressible Euler equations as asymp-
totic limit when the Mach number tends to zero. We thus consider system (16) in the following where the symbol ˜ is
dropped for the sake of simplicity.

4.1.2. Asymptotic analysis
We now examine the limit system associated to system (16) when the Mach number tends to zero. The various flow

variables ‘ f ’ are expanded as:

f = f0 + ε f1 + ε2 f2, where ε → 0+.

At the order ε−2 system (16) implies,

∂ p0

∂x
= 0. (17)

At the order ε−1 it implies,

∂ p1

∂x
= 0, (18)

and at leading order the limit system reads:

∂ρ0

∂t
+ u0

∂ρ0

∂x
+ ρ0

∂u0

∂x
= 0,

∂u0

∂t
+ u0

∂u0

∂x
+ 1

ρ0

∂ p2

∂x
= 0,

∂ p0

∂t
+ ρ0c2

0
∂u0

∂x
= 0. (19)

Under the condition,

∂ p0

∂t
= 0, (20)

system (19) tends formally to the incompressible Euler equations,

ρ0 = const,

∂u0

∂x
= 0,

∂u0

∂t
+ u0

∂u0

∂x
+ 1

ρ0

∂ p2

∂x
= 0. (21)

To enforce condition (20), an extra coefficient is added to the pressure equation of system (19):

1

M2

∂ p0

∂t
+ ρ0c2

0
∂u0

∂x
= 0. (22)

This penalization strategy, due to Turkel [14], forces solutions of system (19) to converge to incompressible solutions of
system (21).
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4.1.3. System considered for the Riemann problem solution
Inserting (22) in (19) and using (17)–(18), the following leading order system is obtained:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂ p

∂x
= 0,

∂ p

∂t
+ M2u

∂ p

∂x
+ M2ρc2 ∂u

∂x
= 0. (23)

This system is hyperbolic and has the following wave speeds: u, u + c̃+ , u − c̃− , with,

c̃− = (1 − M2)u + √
(M2 − 1)2u2 + 4M2c2

2
, c̃+ = (M2 − 1)u + √

(M2 − 1)2u2 + 4M2c2

2
. (24)

These wave speeds are directly used in the HLLC solver (64). It is worth to mention that the Euler system is modified in
the Riemann problem resolution only, where formulation (23) is used. With the fluxes computed with the HLLC solver,
the Godunov method (63) is used with the conventional conservative formulation of the Euler equations and unmodified
equation of state. Thus, the solved flow model corresponds exactly to the Euler equations with the EOS (4). In this variant
of the Turkel [14] method, due to Guillard and Viozat [19], the preconditioning only appears in the flux computation. The
formulation remains conservative and guarantees correct jumps across waves, as will be illustrated later. It only acts on the
numerical dissipation. As the conservative formulation is used, even strong discontinuities can be handled by the method.
Also, as the Mach number can be varied in (23), the method is able to compute fast flows. This remarkable feature is due
to Guillard and Viozat [19]. The validity and efficiency of this method is illustrated later. We now address an extension to
the two-phase flow model (1) and its pressure non-equilibrium variant (6).

4.1.4. Two-phase low Mach preconditioning
The pressure non-equilibrium model (6) in primitive variables formulation reads:

∂α1

∂t
+ u

∂α1

∂x
= 0,

∂α1ρ1

∂t
+ α1ρ1

∂u

∂x
+ u

∂α1ρ1

∂x
= 0,

∂α2ρ2

∂t
+ α2ρ2

∂u

∂x
+ u

∂α2ρ2

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂ P

∂x
= 0,

∂e1

∂t
+ u

∂e1

∂x
+ p1

ρ1

∂u

∂x
= 0,

∂e2

∂t
+ u

∂e2

∂x
+ p2

ρ2

∂u

∂x
= 0,

∂ P

∂t
+ u

∂ P

∂x
+ ρc2 ∂u

∂x
= 0 (25)

where P = α1 p1 + α2 p2.
The pressure relaxation terms have been omitted as they are solved separately. This system admits the following frozen

sound speed defined by:

c f =
√

Y1c2
1 + Y2c2

2. (26)

This sound speed is very different from the mechanical equilibrium one given by (2). However, the equilibrium sound
speed is recovered after the projection to pressure equilibrium, as summarized in Section 2. Theoretical details on sound
propagation in media with relaxation may be found, for example, in [47]. In the present two-phase flow context, the sound
speed has dramatic variations, from formula (26) to (2). Theoretical proof is given in [1] or [3].

As system (6) is overdetermined (see again Section 2 for details), its primitive formulation is also overdetermined. In
particular, the mixture pressure equation and the two internal energy equations form an overdetermined subsystem.

During low Mach preconditioning, in order to force the incompressibility condition,

∂u = 0, (27)

∂x
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Fig. 3. Schematics representation of the Riemann problem and associated wave speeds.

when the Mach number tends to zero, the pressure equation has been modified with a penalization coefficient (Eq. (22)),
resulting in system (23) in the single phase flows context. Here, the same preconditioned pressure formulation is adopted:

1

M2

∂ P

∂t
+ u

∂ P

∂x
+ ρc2 ∂u

∂x
= 0. (28)

Modifying the mixture pressure equation immediately modifies the wave speeds, as previously in the single phase flow
case:

c̃− =
(1 − M2)u +

√
(M2 − 1)2u2 + 4M2c2

f

2
, c̃+ =

(M2 − 1)u +
√

(M2 − 1)2u2 + 4M2c2
f

2
. (29)

These two formulas are identical to those given by Murrone and Guillard [45] and Braconnier and Nkonga [46]. However,
the Mach number is calculated with the sound speed (26). With the help of (27), the incompressible limit of system (25)
becomes:

∂α1

∂t
+ u

∂α1

∂x
= 0,

∂ρ1

∂t
+ u

∂ρ1

∂x
= 0,

∂ρ2

∂t
+ u

∂ρ2

∂x
= 0,

∂u

∂t
+ u

∂u

∂x
+ 1

ρ

∂ P

∂x
= 0,

∂ p1

∂t
+ u

∂ p1

∂x
= 0 or alternatively

∂e1

∂t
+ u

∂e1

∂x
= 0,

∂ p2

∂t
+ u

∂ p2

∂x
= 0 or alternatively

∂e2

∂t
+ u

∂e2

∂x
= 0,

∂u

∂x
= 0. (30)

The limit internal energy equations will be of particular help to determine appropriate jump relations for the low Mach
Riemann solver presented hereafter.

Solving the Riemann problem. Using the notations given in Fig. 3, the various wave speeds are given by:

Sl = ul − c̃l, Sr = ur + c̃r, with definition (29), (31)

and

SM = S R(ρu)R − SL(ρu)L − ((ρu2 + p)R − (ρu2 + p)L)

S RρR − SLρL − ((ρu)R − (ρu)L)
. (32)

The two-phase Riemann problem is solved as detailed in [3], except for the internal energy equations.
The U∗

L and U∗
R states are determined with the following relations:

(αkρk)
∗
R = (αkρk)R

S R − uR

S R − SM
, (33)

(αkρk)
∗
L = (αkρk)L

SL − uL

SL − SM
, (34)

p∗ = pR + ρR uR(uR − S R) − ρ∗
R SM(SM − S R), where ρ∗

R =
∑

(αkρk)
∗
R , (35)
k
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E∗
R = ρR E R(uR − S R) + pR uR − p∗SM

ρ∗
R(SM − S R)

, (36)

E∗
L = ρL E L(uL − SL) + pLuL − p∗ SM

ρ∗
L (SM − SL)

. (37)

In the absence of relaxation effects, the volume fraction is constant along fluid trajectories:

α∗
k,R = αk,R , α∗

k,L = αk,L . (38)

Once U∗
L and U∗

R are determined, the solution flux vector, F ∗ , is computed using relation (64) and the following definitions:

U =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1
α1ρ1
α2ρ2

α1ρ1e1
α2ρ2e2

ρu
ρE

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, F =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

α1u
α1ρ1u
α2ρ2u

α1ρ1e1u
α2ρ2e2u
ρu2 + P

(ρE + P )u

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (39)

In the low Mach number limit, the internal energy equations reduce to:

∂e1

∂t
+ u

∂e1

∂x
= 0,

∂e2

∂t
+ u

∂e2

∂x
= 0. (40)

Therefore, there is no internal energy jump through the Sl and Sr waves. Thus, the internal energies in the L∗ and R∗ states
are computed as follows:

e∗
k,L = ek,L,

e∗
k,R = ek,R . (41)

These two last relations are very different from the isentropes used in Murrone and Guillard [45]. Let us also mention that
Eqs. (40) correspond to the asymptotic limit of the entropy equations of system (25) and that they also correspond to the
same limit of the entropy equations (3) corresponding to the mechanical equilibrium system. The influence of the jump
relations (41) will be examined later with computational experiments.

4.2. Preconditioned Riemann solvers illustrations

4.2.1. Single phase nozzle flow
The explicit Godunov scheme of Appendix A with HLLC Riemann solver is used, with the preconditioned wave speed

(24) derived previously.
In the formulation (23), and consequently in the associated Riemann solver given in Appendix A, the Mach number M is

set to a reference value Mref which is either used as a constant in the entire flow field or considered variable at each cell
boundary. To illustrate the method efficiency, the same nozzle flow problem as studied previously in Fig. 2 is considered.

A coarse mesh with 100 grid points is considered and the Mref influence is studied. Corresponding results are shown in
Fig. 4 at steady state.

On this test case, the unpreconditioned Godunov method predicts negative pressure inside the nozzle divergent, which
is possible in the frame of SG EOS. Preconditioning the method corrects this defect. These results clearly show the benefit
of the Riemann solver preconditioning as close agreement with the exact solution is reached. However, the explicit scheme
is not efficient enough for practical applications because of the stability restriction (44), due to [48]. An implicit formulation
will be addressed later to overcome this restriction. Before addressing this extension, the explicit formulation is examined
(for obvious simplicity reasons) in the two-phase flow context.

4.2.2. Two-phase nozzle flow
To illustrate the two-phase low Mach number preconditioning, the same nozzle flow problem as studied previously is

considered. However, the liquid water at the inflow now contains a small fraction of air.
Mass flow rate and total enthalpy are imposed at left while the right outlet is opened to the atmosphere. The fluids used

in the calculations correspond to liquid water and air, with the following SG EOS (4) parameters γwater = 4.4, P∞,water =
600 MPa, γair = 1.4, P∞,air = 0 Pa. The imposed conditions at left inflow are the following:

m = 6500 kg m−2 s−1, ρwater = 1000 kg m−3, ρair = 1 kg m−3, αwater,0 = 0.9999, P = 0.1 MPa.
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Fig. 4. Computed pressure profiles in the Laval liquid nozzle flow test with Mref = 0.1, Mref = local Mach number and without Mref are compared against
the compressible exact solution. The error decreases dramatically as soon as Mref is used and tends to the local Mach number.

The imposed total enthalpy is computed with ρwater,ρair,αwater,0 and P . With these boundary conditions, the numerical
solution has been computed using different values of Mref ,min: 0.1, 0.05, 0.01 and two meshes containing 100 cells and 200
cells, respectively. Mref ,min will be defined in the next subsection. The quasi-1D two-phase reference solution is computed
using the method described in Appendix B. Fig. 5 shows clearly that the waves’ speed choice and modification of the solver
have dramatic consequences on method convergence in the low Mach number limit. These results are compared to the
ones obtained with Murrone and Guillard [45] low Mach preconditioning technique in Fig. 6. These results show that, even
though the Murrone and Guillard [45] low Mach preconditioning technique improve solution accuracy, convergence to the
exact solution is not reached at all. This is mainly a consequence of inappropriate energy jump conditions used in the
Riemann solver by these authors in the low Mach limit. Murrone and Guillard method uses isentropic evolutions across the
left and right facing waves whereas relations (41) are used herein.

4.2.3. Preconditioning method precautions
It appears clearly that the waves’ speed choice in the HLLC solver has dramatic consequences on method convergence in

the low Mach number limit. It is also clear that the more Mref tends to the local Mach number, in the low Mach limit, the
better the accuracy is. Therefore, the best solution consists in setting the reference Mach number, Mref , to the local one, Mi .
But, as the artificial “sound speeds” (24) tend to wrong values when M tends to 0, the following function is used:

Mi
ref =

⎧⎨⎩
1, if Mi � 0.3,

Mi, if 0.3 > Mi > Mref ,min,

Mref ,min, if Mi � Mref ,min.

(42)

The upper limit, 0.3 has been chosen in reference to the “common” arbitrary barrier between a compressible and an
incompressible flow. Nevertheless, depending on the applications, changing this limit might have some impacts on the
solution. In the test cases considered in this paper, using 0.3 was appropriate.

The minimum Mach number, Mref ,min is typically 10−2 or 10−3. The preconditioned sound speeds must be computed
with a unique M∗

ref at a given cell boundary for the Riemann problem resolution:

M∗
ref = Max

(
ML

ref , M R
ref

)
(43)

where the superscripts “L” and “R” denote the left and right states of a cell boundary.
It is also important to report the computational cost to reach steady state on the previous computational example with

this method. The stability restriction for such scheme is more restrictive than conventional CFL criterion for compressible
flows. Indeed, the time step has to fulfil [48]:

�t � CFLMref ,min
�x

Max(|u| + c)
. (44)

This modified CFL restriction is due to the added dissipation by the modified wave speeds (29). It explains the computational
costs reported in Tables 2 and 3.

The corresponding Godunov scheme with low Mach preconditioning is thus accurate but still expensive due to the time
step restriction (44). It is thus mandatory to derive an implicit scheme.
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Fig. 5. Computed mixture velocity, mixture pressure, and water volume fraction profiles in the two-phase nozzle using different values of Mref against the
compressible exact solution. The error decreases dramatically as soon as Mref is used and tends to the local Mach number.

5. Implicit scheme

5.1. Implicit scheme for the Euler equations

In order to overcome aforementioned stability restrictions, an implicit scheme has to be used. For the sake of simplicity,
the implicit scheme is first presented for the Euler equations in 1D. Multi-D and multiphase extensions are addressed later.
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Fig. 6. Computed mixture pressure, velocity and water volume fraction profiles in the two-phase nozzle using Murrone and Guillard [45] low Mach precon-
ditioning technique compared to the exact compressible solution. This technique clearly has convergence issues for two-phase solutions.

Table 2
Computational time versus Mref ,min for the Laval single
phase nozzle test problem with 100 cells.

Mref ,min CPU

0.1 3 min 17 s
Minimum local Mach 1 h 23 min 12 s

Table 3
Computational time versus Mref ,min for the Laval two-phase
nozzle test problem with 100 and 200 cells.

Mref ,min CPU

0.1 4 min 06 s
0.01 44 min
0.01 2 h 36 min (200 cells)

5.1.1. Implicit Godunov scheme
The implicit version of the Godunov scheme reads:

Un+1
i − Un

i = − �t

�x

(
F n+1

i+ 1
2

− F n+1
i− 1

2

)
(45)

where the flux vectors F n+1
i+ 1

2
and F n+1

i− 1
2

are computed according to variables at time tn+1. Under the Taylor expansion, the

flux vectors become:

F n+1
i+ 1 = F n

i+ 1 +
∂ Fi+ 1

2

)n(
Un+1

i − Un
i

) +
∂ Fi+ 1

2

)n(
Un+1

i+1 − Un
i+1

)
, (46)
2 2 ∂Ui ∂Ui+1
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F n+1
i− 1

2
= F n

i− 1
2

+
∂ Fi− 1

2

∂Ui

)n(
Un+1

i − Un
i

) +
∂ Fi− 1

2

∂Ui−1

)n(
Un+1

i−1 − Un
i−1

)
. (47)

Let’s take the example of the right cell boundary. The corresponding flux, F n
i+ 1

2
, is solution of the Riemann problem and is

consequently function of the left and right states: F n
i+ 1

2
= F ∗(Un

i , Un
i+1). The Riemann solver used here is the HLLC solver,

already presented (64). Let’s denote the variation:

δUi = Un+1
i − Un

i . (48)

Rewriting relations (45), (46) and (47) using (48), the following scheme is obtained:

− �t

�x

∂ Fi− 1
2

∂Ui−1

)n

δUi−1 + δUi

[
I + �t

�x

∂ Fi+ 1
2

∂Ui

)n

− �t

�x

∂ Fi− 1
2

∂Ui

)n]
+ �t

�x

∂ Fi+ 1
2

∂Ui+1

)n

δUi+1

= − �t

�x

(
F n

i+ 1
2

− F n
i− 1

2

)
. (49)

It forms a block tridiagonal linear system composed of full matrices. This tridiagonal system can be solved either by direct
or by iterative methods. We have implemented the Gauss–Siedel iterative method as well as a connexion with the PETSc
libraries [49–51], which use the Krylov subspace method.

It is worth to mention that this Taylor expansion method is a particular case of the Newton–Raphson method which can
be presented as follows. Let’s consider the function G(δU ) whose components are Gi(δU ) = δU + �t

�x (F n+1
i+ 1

2
− F n+1

i− 1
2
). The goal

is to solve,

G(δU ) = 0. (50)

As F n+1
i+ 1

2
and F n+1

i− 1
2

are non-linear functions of δUi , one way to solve this equation is to use the Newton–Raphson method,

which, in this case, reads:

G
(
δUk+1) = G

(
δUk) +

(
∂G(δUk)

∂δUk

)(
δUk+1 − δUk). (51)

As the condition G(δU k+1) = 0 has to be reached, the following formula is obtained:

δUk+1 = δUk −
[(

∂G(δUk)

∂δUk

)]−1

G
(
δUk). (52)

where δU k represents δU at the k step of the iterative method. For practical applications, one or two iterations only are
used.

The implicit Godunov type scheme needs an approximate Riemann solver to compute the numerical fluxes F n
i± 1

2
as well

as the various flux derivatives. The HLLC flux (64) is used and the flux derivatives appearing in (49) are given by:

∂ F LR

∂U L
= 1

2

∂ F L

∂U L
− 1

2

nw∑
j

sign(λ j)
∂δW j

∂U L
,

∂ F LR

∂U R
= 1

2

∂ F R

∂U R
− 1

2

nw∑
j

sign(λ j)
∂δW j

∂U R
. (53)

The calculation details for the HLLC Riemann solver are given in Appendix C.
For the considered test cases shown in this paper, solving the linear system takes about 70% of the computation time.

5.1.2. Illustrations
To illustrate the implicit scheme efficiency, we consider the same test problem as before (Section 4.2.1). A coarse mesh

with 100 grid points is considered. Corresponding results are shown in Fig. 7 at steady state.
As expected, the implicit scheme is numerically stable for larger time steps. It is worth to mention that the computational

time is now 4 min, with a CFL coefficient equal to 15, to be compared to the computational time of 43 min needed by the
explicit scheme, with stability condition (44).

5.1.3. Time accuracy
The previous sections have illustrated the implicit scheme ability to converge to exact steady solutions using low Mach

number preconditioning. In order to check its time accuracy capabilities, a liquid–liquid shock tube test case is considered.
The domain is a 1 m long shock tube containing two chambers separated by an interface at the location x = 0.5 m. In this
tube, each chamber contains pure liquid water (γwater = 4.4, P∞,water = 600 MPa) at an initial density of 1000 kg m−3. The
initial pressure in the left chamber is set equal to 1 MPa while the initial pressure in the right chamber is set equal to
0.1 MPa.
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Fig. 7. Computed pressure and density profiles in the Laval liquid nozzle flow with Mref = Mi compared against the compressible exact solution. Implicit,
explicit and exact solutions show excellent agreement.

The explicit and implicit with low Mach preconditioning numerical solutions are compared to the exact solution of the
Euler equations at a physical time equals to t = 0.15 ms (Fig. 8). These computations are made on a mesh composed of
200 uniform cells with a CFL coefficient equal to 0.8 for the explicit low Mach computations and 8.0 for the implicit ones.
These results show that the low Mach preconditioning preserves wave propagation. Indeed, although the results calculated
with the implicit scheme and low Mach number preconditioning are clearly diffused, they predict the correct jumps through
the shock and expansion wave as well as the correct mean wave positions. This time accuracy capability is of fundamental
importance to predict cavitation instabilities in industrial systems as those illustrated in Figs. 12 and 15. These instabilities
are closely linked to pressure wave propagation. The present method is clearly time accurate.

5.2. Multi-D extension

Multi-D extension of the method requires Riemann solver preconditioning as developed previously. Indeed, even if it has
been argued that low Mach convergence difficulties were vanishing when using triangular cells [52,53] with conventional
Godunov methods, this “miracle” strictly due to triangles was only possible for open domains, i.e in the absence of boundary
conditions. This is not at all the case for practical applications. Therefore we address in the following a multi-D extension
of the implicit method presented previously. Let’s consider a cell, i, and denote by V (i) its volume and by Vo(i) the set of
neighbouring and cells, as shown in Fig. 9.

Therefore, the implicit Godunov finite volumes scheme reads:(
Un+1

i − Un
i

) = − �t

V (i)

∑
j∈Vo(i)

F n+1
i, j . (54)

Under similar notations as in 1D, the fluxes are expanded as follows:
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Fig. 8. Computed pressure, velocity and density profiles in the liquid–liquid shock tube with the conventional explicit Godunov scheme and the implicit
scheme with low Mach preconditioning (Mref ,min = 0.1) compared against the compressible exact solution. The implicit scheme using low Mach precondi-
tioning is clearly diffused but predicts the correct jumps through the shock and expansion wave.

Fig. 9. Schematic representation of a triangular cell with its set of neighbours, Vo(i) = {V 1, V 2, V 3}.

F n+1
i, j = F n

i, j + ∂ Fi, j

∂Ui

)n(
Un+1

i − Un
i

) + ∂ Fi, j

∂U j

)n(
Un+1

j − Un
j

)
. (55)

Denoting the variation by δUi = Un+1
i − Un

i and using (55) in (54) the following scheme is obtained,(
I + �t

V (i)

∑
j∈Vo(i)

A j
ii

)
δUi + �t

V (i)

∑
j∈Vo(i)

(
A j

i jδU j
) = − �t

V (i)

∑
j∈Vo(i)

F n+1
i, j (56)

with,

A j
ii = ∂ Fi, j

∂Ui

)n

, A j
i j = ∂ Fi, j

∂U j

)n

.

In compact form it reads,

MδU = D,
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where,

δU =

⎡⎢⎢⎢⎣
δU1

.

.

.

δU N

⎤⎥⎥⎥⎦ , D =

⎡⎢⎢⎢⎣
.

.

− �t
V (i)

∑
j∈Vo(i) F n+1

i, j S(i j)
.

.

⎤⎥⎥⎥⎦ .

The M matrix shape depends on the number of faces per cell. In order save computational time, the sparse character of the
M matrix has to be exploited. In this work, the CSC (Compressed Sparse Column) method is used, which is detailed in [54].

Higher order extension of the method is detailed in Appendix D.

5.3. Implicit scheme for the two-phase flow model

In this section, the implicit scheme for the hyperbolic two-phase flow model is addressed. The model under considera-
tion corresponds to system (6) without relaxation terms. It is considered hereafter in 1D for the sake of simplicity. These
equations can be arranged in two sets: Conservative equations on one hand and non-conservatives equations on the other
hand. The conservative set of equations reads:

∂Ω

∂t
+ ∂ F (U )

∂x
= 0. (57)

The non-conservative set of equations reads:

∂V

∂t
+ ∂G(U )

∂x
+ H(U )

∂u

∂x
= 0 (58)

where,

U =
(

Ω

V

)
, Ω =

⎛⎜⎝
α1ρ1
α1ρ2
ρu
ρE

⎞⎟⎠ , V =
(

α1
α1ρ1e1
α2ρ2e2

)
(59)

and,

F (U ) =
⎛⎜⎝

α1ρ1u
α1ρ2u

ρu2 + P
(ρE + P )u

⎞⎟⎠ , G(U ) =
(

α1u
α1ρ1e1u
α2ρ2e2u

)
, H(U ) =

( −α1
α1 p1
α2 p2

)
. (60)

The implicit scheme derived previously for the Euler equations is used for the conservative system with some modifications.
Indeed, the pressure, P , and the mixture total energy, E , are now functions of ρ , e, α1, α2 (7). Therefore, the derivatives
involved in the implicit flux computation are more complex. Their expressions are given in Appendix E. Most of the efforts
are focused on the implicit scheme for the non-conservative system. Approximating (8) implicitly reads:

V n+1
i = V n

i − �t

�x

(
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i+ 1
2

− G∗,n+1
i− 1

2
+ H(U )n+1

i

(
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2
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i− 1

2

))
. (61)

Using the same development as previously (46)–(47), the following scheme is obtained:
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(
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2
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2

))
. (62)

The various expressions for the derivatives are detailed in Appendix F.
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Fig. 10. Computed mixture pressure, velocity, density and water volume fraction profiles in the two-phase nozzle using different values of Mref ,min against
the compressible exact solution. The exact solution is reached when Mref ,min is equal to 0.01.

Table 4
Computational time versus Mref ,min for the Laval two-phase nozzle test problem with the implicit scheme.

Mref ,min CPU (Implicit scheme) Implicit CFL Explicit CFL

0.1 46 s 30.0 0.9
0.01 8 min 45 s (200 cells) 150.0 0.9

6. Illustrations and validations

6.1. One-dimensional two-phase nozzle flow

To illustrate the behaviour of the two-phase implicit scheme, we consider the same two-phase nozzle flow test as before
(Section 4.2.2). The numerical solution has been computed using different values of Mref ,min (0.1 and 0.01) as well as two
different meshes (100 and 200 cells). Corresponding results are shown in Fig. 10 at steady state.

The implicit scheme has the same behaviour and accuracy as the explicit version. The corresponding computational cost
is reported in Table 4, with stability condition (44).

Compared to explicit calculation times (Table 3), considerable saving appear as the implicit scheme reduces the com-
putation times cost by a factor of 18. To conclude, the implicit scheme presented in the previous section is efficient and
accurate for two-phase flow calculations. Multi-D two-phase examples are addressed in the next subsection.

6.2. 2D computations of cavitating flows in Venturi channels

In this subsection, 2D two-phase nozzle flow computation is addressed. We first present the geometry and the various
flow parameters. Then, numerical results are compared against experimental records.
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Fig. 11. LEGI 8◦ Venturi geometry.

Table 5
Venturi 8◦ points coordinates.

X (abscissa) (m) Y (m) X (abscissa) (m) Y (m)

A 0 0 E 1.225 −0.114
B 0.1 0 F 0 0.0488
C 0.153 0.0157 G 0.271 0.0488
D 0.588 −0.0517 H 1.233 −0.00845

Fig. 12. Instantaneous pictures of a break off cycle in the 8◦ Venturi channel of LEGI. Courtesy of S. Barre, LEGI, Grenoble, France.

6.2.1. Test problem
The experimental facility has been built at LEGI Laboratory, Grenoble, France by the group led by S. Barre. The test section

corresponds to a Venturi channel with a nozzle divergent inclined at an angle of 8◦ . The geometry is shown in Fig. 11.
The corresponding point coordinates are given in Table 5.
As phase transition occurs at the throat, heat and mass transfer have to be considered. These effects are accounted for by

considering extra relaxation effects in addition to pressure relaxation. Indeed, as detailed in Saurel et al. [2], temperature and
Gibbs free energy relaxation have to be considered. Appropriate relaxation solver is summarized in Appendix G. Simulating
phase transition requires appropriate EOS parameters. The fluids considered correspond to liquid water and water vapour,
with the following SG EOS (4) parameters: γliq = 1.234, P∞,liq = 2532.302 atm, γvap = 1.316 and P∞,vap = 0 Pa. These
parameters have been computed following the method detailed in [35].

Mass inflow rate and stagnation enthalpy are imposed and a prescribed pressure is imposed at the outlet. The imposed
conditions at the left inlet are the following,

m = 7514.917 kg m−2 s−1, ρliq = 1067.566 kg m−3, ρvap = 0.387 kg m−3,

αliq = 0.999, P = 51 825 Pa

while, at the right outlet, the prescribed pressure is P = 72 025 Pa.

6.2.2. Experimental results
The 8◦ Venturi channel of Fig. 11 has been used at LEGI (Grenoble, France) to study cavitating flows. With the boundary

conditions reported in the previous subsection, a periodic flow is observed, as shown in Fig. 12. In the first stage of the cycle
(a), a cavitation sheet is attached to the throat and grows. In a second stage, the sheet reaches its maximum length (b) and
breaks in two parts (c). At the end, the downstream part is swept along within the stream and starts to collapse while the
attached part starts another cycle (d). The mean attached cavity length value is 45 ± 5 mm while the quasi-periodic vapour
clouds shedding frequency is about 45 Hz. The cloud shedding frequency is calculated using spectral analysis of pressure
measurement in the Venturi divergent.

6.2.3. Numerical results
A 2D unstructured mesh containing 52 450 cells is used, as shown in Fig. 13. The grid is refined at the throat in order to

capture the cavitation pocket. The average cell size is 0.013 mm at the throat and 0.08 mm elsewhere.
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Fig. 13. Venturi 8◦ 2D unstructured mesh.

Fig. 14. Computed contours of volume fraction of water vapour without low Mach preconditioning. The computed results do not present any shedding and
the vapour pocket size as well as the computed flow are in complete disagreement with the experiments. The flow is coming from right to left.

We first address again the remark mentioned at the beginning of Section 5.2, related to the “triangle miracle” [52,
53]. With the mesh shown in Fig. 13, made of triangles, the two-phase 2D explicit scheme is used without low Mach
preconditioning to reach 1.8 s of physical time. As shown in the volume fraction contours of Fig. 14, the obtained pockets
does not present any cloud shedding and they only contain around 27% of vapour. The vapour pocket size as well as the
observed behaviour are in total disagreement with the experimental results. Indeed, the mean vapour pocket length is about
18 mm and no oscillatory behaviour is observed.

We now consider the same mesh with the two-phase 2D implicit scheme along with the two-phase low Mach precondi-
tioning (Mref ,min is set to 0.04). Using a cluster with 24 CPU 1.8 s of physical time is reached in about 97 h with an average
CFL coefficient equal to 28. It’s worth to mention that the projected calculation time (obtained after running the simulation
for two days) using an explicit scheme with the same low Mach preconditioning is about 5107 h (
 7 months). Therefore,
using the implicit scheme allows for a projected acceleration factor of about 53.

This physical time was long enough to obtain a quasi-stationary flow with quasi-periodic vapour cloud shedding. An ex-
ample of the obtained cloud shedding is shown in the volume fraction contours of Fig. 15. Moreover, the velocity magnitude
and Mach number contours at the end of the cycle are shown in Fig. 16. The Mach number is built using the equilibrium
sound speed. From Figs. 14 and 15, it appears that the quasi-incompressible behaviour of the liquid must be considered,
otherwise cavitation pockets present huge discrepancies. But, its is also clear that compressible effects are also important,
as shown in Fig. 16. This illustrates the difficulty of cavitating flows computations. A pressure signal is also recorded using a
numerical gauge located in the middle of the E H segment, at the end of the Venturi divergent (Fig. 11). Examining the wa-
ter vapour volume fraction contours oscillations, a vapour pocket shedding frequency of about 43 Hz is determined. In order
to check this observed frequency, a spectral analysis of the recorded pressure signal was performed. The obtained spectrum
is shown in Fig. 17. The maximum intensity is reached for frequencies between 40 and 50 Hz, which is in very good agree-
ment with the observed clouds shedding frequency based on the vapour pocket oscillations. By performing measurements
during every cycle, an average attached cavity length of about 45 mm has been measured from the computations. These
results show again very good agreement with the experiments. Indeed, experimental measurements gave a mean attached
cavity length equals to 45 ± 5 mm.
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Fig. 15. Computed contours of volume fraction of water vapour. This example of the computed break off cycles shows the same four different parts as
those observed during the experimental studies and shown in Fig. 12. The mean attached cavity length is about 45 mm, in perfect agreement with the
experiments.

Fig. 16. Velocity magnitude and Mach number contours at the end of the cycle (d). Throat close-up. The Mach number is built with the equilibrium sound
speed.

An important remark regarding the modelling of such flows appears. It is possible to reproduce the large structures of
such cavitating flows without having recourse to adjustable parameter nor turbulence modelling. The present results show
that,

– a model in agreement with the fundamental principles of total energy conservation and entropy inequality, and,
– an algorithm suited for two-phase all Mach number conditions,

reproduce with high fidelity the experiments, at least in the present conditions.

7. Conclusion

The Turkel preconditioned formulation has been used in the Riemann problem solution determination and embedded
in the Godunov method with HLLC scheme, in both explicit and implicit versions. This variant of the Turkel method, due
to Guillard and Viozat [19], has shown particular efficiency for all Mach number single phase flow conditions. It has been
extended to the two-phase flow model of Kapila et al. [1], particularly suited for interfacial flows [3] as well as cavi-
tating flows [2]. Compared to conventional cavitating flow models widely used in industry, this model conserves energy.
Also, phase transition is modelled in a thermodynamically consistent way. The preconditioning method requires mild mod-
ifications on the internal energy jumps conditions in the Riemann solver that have important consequences on method
convergence. The method has been validated against exact 1D solutions and experimental 2D cavitating Venturi flows. With-
out using any adjustable parameter, the method has shown its ability to reproduce many challenging features of cavitating
flows.
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Fig. 17. Spectral analysis of the recorded pressure signal using a pressure gauge located at the end of the Venturi divergent. The obtained spectrum shows
maximum intensity for frequencies between 40 and 50 Hz. This is in excellent agreement with the computed cloud shedding frequency of 43 Hz and in
excellent agreement with the experimental frequency of 45 ± 5 Hz.

Fig. 18. Nozzle computational cell i with its two cell boundaries, i + 1/2 and i − 1/2.
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Appendix A. Godunov–HLLC scheme for the Euler equations in ducts of smooth varying cross sections

Let’s consider a computational cell corresponding to an arbitrary control volume inside a nozzle, as shown in Fig. 18.
The conventional 1D Godunov scheme for ducts of smooth varying cross sections reads:

Un+1
i = Un

i − �t

V i

(
F ∗

i+ 1
2

Si+ 1
2

− F ∗
i− 1

2
Si− 1

2

) + �t

V i
Gi(Si+ 1

2
− Si− 1

2
) (63)

with

U =
(

ρ
ρu
ρE

)
, F =

(
ρu

ρu2 + p
(ρE + p)u

)
, Gi =

( 0
pn

i
0

)
where:

– U represents the conservative variables vector,
– F represents the flux vector,
– S represents the cell boundary surface,
– V i represents the cell volume.

This basic first-order version is used to avoid artefacts in the various computational test.
The HLLC Riemann solver (Toro et al. [34]) is used to compute the inter-cell flux F ∗ (see Fig. 19). At cell boundary i + 1

2 ,
it reads:

F L,R = 1
(F L + F R) − sign(SL)

SL (
U∗

L − U L
) − sign(SM)

SM (
U∗

R − U∗
L

) − sign(S R)
S R (

U R − U∗
R

)
. (64)
2 2 2 2
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Fig. 19. Schematization of the Riemann problem for the Euler equations under HLLC approximation and associated wave speeds.

The subscripts L and R denote the left and right state of the Riemann problem, respectively. The wave speeds S R and SL

are estimated with Davis approximation [55],

S R = Max(uR + cR , uL + cL), SL = Max(uR − cR , uL − cL), (65)

while SM is estimated under HLL [56] approximation,

SM = S R U R(2) − SL U L(2) − (F R(2) − F L(2))

S R U R(1) − SL U L(1) − (F R(1) − F L(1))
. (66)

The states U∗
L and U∗

R are determined with the help of Rankine–Hugoniot jump relations across the S R and SL waves,

F ∗
L − SL U∗

L = F L − SL U L, F ∗
R − S R U∗

R = F R − S R U R , (67)

and interface relations, u∗
L = u∗

R = SM and p∗
L = p∗

R = p∗ , across the contact wave. It results in:

U∗
L = 1

SM − SL

[
F L − SL U L − (

0, p∗, SM .p∗)T ]
, U∗

R = 1

SM − S R

[
F R − S R U R − (

0, p∗, SM .p∗)T ]
. (68)

Appendix B. Exact steady two-phase nozzle solution with imposed mass flow rate and stagnation enthalpy

In many practical situations, the mass flux m0 is imposed as well as the stagnation enthalpy H0. For two-phase flows,
the mixture enthalpy reads:

H0 = Y0,1h0,1 + Y0,2h0,2 + 1

2
u2

0. (69)

It means that the mass fractions have to be imposed, as well as the volume fraction of one of the phases, α0,1, for example.
It is thus necessary to impose m0, hk,0, Yk,0 and α1,0. Another option being to impose m0, P0, ρk,0 and α1,0. The exact
solution determination with such boundary conditions follows the same methodology as the one detailed previously in [40]
for single phase flows.

Outlet state determination for subsonic isentropic flows. The outlet pressure is prescribed and denoted by Pout . Using the
SG EOS (4) the phase total enthalpy is expressed at the outlet as:

hk,0 = γk(Pout + P∞,k)vk,out

(γk − 1)
+ 1

2
u2

out. (70)

With the help of the mass flow rate conservation (m0 = ρout Aoutuout) and the mixture density definition ( 1
ρout

= Y1,0 v1,out +
Y2,0 v2,out), the two following equations are obtained:

h1,0 = γ1(Pout + P∞,1)v1,out

(γ1 − 1)
+ 1

2

(
m0

Aout

)2

(Y1,0 v1,out + Y2,0 v2,out)
2, (71)

h2,0 = γ2(Pout + P∞,2)v2,out

(γ2 − 1)
+ 1

2

(
m0

Aout

)2

(Y1,0 v1,out + Y2,0 v2,out)
2. (72)

Combining these two relations, an expression linking v1,out and v2,out is obtained:

v1,out = (γ1 − 1)

γ1(Pout + P∞,1)

[
h1,0 − h2,0 + γ2(Pout + P∞,2)v2,out

(γ2 − 1)

]
. (73)

Using this expression in relation (72), a second order polynomial in v2,out is obtained. The positive solution, v1,out is re-
tained. Once v1,out and v2,out are known, the mixture density at the outlet section is obtained by,
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1

ρout
= Y1,0 v1,out + Y2,0 v2,out (74)

and the outlet velocity is deduced by,

uout = m0

ρout Ao
. (75)

Last, the volume fractions are determined with the help of mass fractions conservation,

αk,0 = Yk,0ρout vk,out. (76)

Variables state determination in an arbitrary cross section. The flow is isentropic between a section of arbitrary area (A)
and the outlet section. Thus, writing the phase total enthalpy conservation between a section of arbitrary area and the
outlet gives the following relation:

hk,out = γk(P + P∞,k)vk(P )

(γk − 1)
+ 1

2

(
m0

A

)2(
Y1,0 v1,out(P ) + Y2,0 v2,out(P )

)2
. (77)

The mixture pressure, P , is therefore determined by solving one of these relations using the Newton–Raphson method.
Once P is known, the phase densities are determined using phases isentropes while the other variables are computed as
previously.

Appendix C. HLLC Riemann solver derivatives

The HLLC approximate Riemann solver is recalled hereafter in the context of the Euler equations, where U ∗
L and U∗

R are
defined by relation (68):
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.

The flux vector derivatives are given by:

∂ F LR

∂U L
= 1

2

∂ F L

∂U L
− sign(SL)

SL

2

(
∂U∗

L

∂U L
− 1

)
− sign(SM)

SM

2

(
∂(U∗

R − U∗
L )

∂U L

)
+ sign(S R)

S R

2

(
∂U∗

R

∂U L

)
, (78)
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(79)

where:

∂U∗
L

∂U L
= ( ∂ F L

∂U L
− SL − ∂

∂U L
(0, P∗, SM .P∗)T )(SM − SL) − (F L − SL U L − (0, P∗, SM .P∗)T ) ∂ S M

∂U L

(SM − SL)2
, (80)

∂U∗
L

∂U R
= − ∂

∂U L
((0, P∗, SM .P∗)T )(SM − SL) − (F L − S R U L − (0, P∗, SM .P∗)T ) ∂ S M

∂U R

(SM − SL)2
, (81)

∂U∗
R

∂U L
= − ∂

∂U L
((0, P∗, SM .P∗)T )(SM − S R) − (F R − S R U R − (0, P∗, SM .P∗)T ) ∂ S M

∂U L

(SM − S R)2
, (82)

∂U∗
R

∂U R
= ( ∂ F R

∂U R
− S R − ∂

∂U R
(0, P∗, SM .P∗)T )(SM − S R) − (F R − S R U R − (0, P∗, SM .P∗)T ) ∂ S M

∂U R

(SM − S R)2
. (83)

Using relations (67), and P∗
L = P∗

R = P∗ , two expressions for P∗ are obtained:

P∗ = F L(2) − SL U L(2) − SM
(

F L(1) − SL U L(1)
)
, P∗ = F R(2) − S R U R(2) − SM

(
F R(1) − S R U R(1)

)
. (84)

Nevertheless, in order to compute a more precise pressure derivative, the following average expression is used for P∗:

P∗ = F R(2) − S R U R(2) − SM(F R(1) − S R U R(1)) + F L(2) − SL U L(2) − SM(F L(1) − SL U L(1))

2
. (85)

It results in the following pressure derivatives:
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SM = S R U R(2) − SL U L(2) − (F R(2) − F L(2))

S R U R(1) − SL U L(1) − (F R(1) − F L(1))
, (88)
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These various derivatives require the knowledge of ∂ F L
∂U L

and ∂ F R
∂U R

. They correspond to the Jacobian matrix of the Euler
equations. Slight changes have to be done with the two-phase flow model. They are detailed in Appendices E and F.

Appendix D. High order extension

MUSCL type reconstruction [57] is considered. Variables extrapolation from the cell centre i and the cell boundary (i j)
is achieved by the following relation:

f i j = f i + Φi
−−−→∇ f i ·−→ri j (91)

where −→ri j is the vector connecting the cell centre and the inter-cell face,
−−−→∇ f i is the approximate gradient of variable f in

cell i and Φi the limiter (Φi � 1).
The gradient is approximated by weighted least squares. From the gradient

−−−→∇ f definition,

df = −−−→∇ f ·−−−→
dM, (92)

with the following notations,

−−−→∇ f =
(a

b
c

)
,

the various gradient components a, b and c, are determined as follows. Relation (92) expressed between the various cell
faces and the cell centre provides N relations (N = 3 for triangles):

f j − f i = a(x j − xi) + b(y j − yi) + c(z j − zi), j = 1, N (93)

where f j represents the value of the f function at the centre of the j cell while x j , y j and z j represent the coordinates of
the j cell centre.

Thus, the following overdetermined system is obtained:

M� f = D (94)

where M is an (N × 3) matrix whereas � f and D are size 3 vectors. To make benefit of this over-determination, system
(94) is multiplied by the M transpose.

MT M� f = MT D. (95)

A new system is thus obtained,

M∗� f = D∗. (96)

However, the matrix M∗ determinant can become very small if some cells are very deformed. To overcome this situation,
one way to proceed is to use weights. A very simple weighting procedure has been proposed in [58]. It consists in using
the weight wi, j = 1√

�x2
i, j+�y2

i, j+�z2
i, j

.

This correction guarantees that the determinant of M∗ is O (1).
The last step in the higher order extension method deals with gradients limitation. The Barth and Jespersten [59] method

is adopted.
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Appendix E. Mixture pressure derivatives

The mixture pressure for the two-phase non-equilibrium model reads:

P =
N∑

k=1

αk pk

where N is the number of fluids.
With the help of the EOS (4) it becomes:

P =
N∑

k=1

[
(γk − 1)αkρkek − αkγk P∞,k

]
. (97)

The volume fraction of fluid N is determined from the saturation constraint:

αN = 1 −
N−1∑
k=1

αk.

Thus, Eq. (97) becomes:

P =
N∑

k=1

(γk − 1)αkρkek +
N−1∑
k=1

αk(γN P∞,N − γk P∞,k) − γN P∞,N (98)

with the following derivatives:

∂ P

∂αkρkek
= γk − 1,

∂ P

∂αk
= (γN P∞,N − γk P∞,k).

Appendix F. Implicit schemes for non-conservative equations of the two-phase flow model

F.1. Volume fraction implicit scheme

In one dimension, the volume fraction equation of system (6) reads:

∂α1

∂t
+ u

∂α1

∂x
= 0.

The Godunov method for advection equations reads:

αn+1
1,i = αn

1,i + �t

�x

[(
αn

1,i−1 − αn
i

)
S+

M,i− 1
2

− (
αn

1,i+1 − αn
i

)
S−

M,i+ 1
2

]
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f n

Li = (
αn

1,i−1 − αn
i

)
S+

M,i− 1
2

= (
1 + sign(SM,i− 1

2
)
)(

αn
1,i−1 − αn

i

) SM,i− 1
2

2
,

f n
Ri = (

αn
1,i+1 − αn

i

)
S−

M,i+ 1
2

= (
1 − sign(SM,i+ 1

2
)
)(

αn
1,i+1 − αn

i

) SM,i+ 1
2

2
.

Thus, the implicit scheme for the volume fraction equation reads:

αn+1
1,i = αn

1,i − �t

�x

[
f n+1

Ri − f n+1
Li

]
. (99)

It is worth to mention that f Ri �= f Li+1 as the equation is non-conservative.
Using the same development as previously ((46)–(47)), with δαi = αn+1

1,i − αn
1,i , the following scheme is obtained,

− �t

�x

∂ f Ri

∂Ui−1
δαi−1 +

[
I + �t

�x

(
∂ f Ri

∂Ui
− ∂ f Li

∂Ui

)]
δαi + �t

�x

∂ f Ri

∂Ui+1
δαi+1 = − �t

�x

(
f n

Ri − f n
Li

)
, (100)

where U represents the whole conservative variables vector.
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F.2. Internal energies implicit scheme

In one dimension, the internal energy equations read (k = 1,2):

∂αkρkek

∂t
+ ∂αkρkeku

∂x
+ αk pk

∂u

∂x
= 0. (101)

The explicit scheme used for this equation reads:

(αρe)n+1
k = (αρe)n

k − �t

�x

(
(αρeu)

∗,n
k,i+ 1

2
− (αρeu)

∗,n
k,i− 1

2
+ (αp)n

k,i

(
u∗,n

i+ 1
2

− u∗,n
i− 1

2

))
(102)

where the product (αk pk)
n
i is assumed constant during the time step and the superscript “*” denotes the Riemann problem

solution state.
Thus, the implicit scheme for the internal energy equations read:

(αρe)n+1
k = (αρe)n

k − �t

�x

(
(αρeu)

∗,n+1
k,i+ 1

2
− (αρeu)

∗,n+1
k,i− 1

2
+ (αp)n+1

k,i

(
u∗,n+1

i+ 1
2

− u∗,n+1
i− 1

2

))
. (103)

Using the same development as previously ((46)–(47)) with Fek = (αρeu)k and δ(αρe)k,o = (αρe)n+1
k,i − (αρe)n

k,i , the follow-
ing scheme is obtained:

− �t

�x

[∂ Fek,i− 1
2

∂Ui−1
+ (αp)n

k,i

∂u∗
i− 1

2

∂Ui−1

]
δ(αρe)k,i−1

+
[

I + �t

�x

(∂ F n
ek,i+ 1

2

∂Ui
−

∂ F n
ek,i− 1

2

∂Ui
+ (αp)n

k,i

[∂u∗
i+ 1

2

∂Ui
−

∂u∗
i− 1

2

∂Ui

]
+ (

u∗
i+ 1

2
− u∗

i− 1
2

)∂(αp)n
k,i

∂Ui

)]
δ(αρe)k,i

+ �t

�x

[∂ Fek,i+ 1
2

∂Ui+1
+ (αp)n

k,i

∂u∗
i+ 1

2

∂Ui+1

]
δ(αρe)k,i+1

= − �t

�x

(
(αρeu)

∗,n
k,i+ 1

2
− (αρeu)

∗,n
k,i− 1

2
+ (αp)n

k,i

(
u∗,n

i+ 1
2

− u∗,n
i− 1

2

))
(104)

where
∂ F

ek,i+ 1
2

∂Ui
,

∂ F
ek,i+ 1

2
∂Ui+1

,
∂ F

ek,i− 1
2

∂Ui
and

∂ F
ek,i− 1

2
∂Ui−1

are calculated using the HLLC flux derivatives (Appendix C).

Appendix G. Stiff thermodynamic relaxation

The following relaxation solver is used to compute the thermodynamic state and in particular the various mass fractions
when stiff thermodynamic relaxation is assumed. A two-phase liquid–vapour mixture in thermodynamic equilibrium is
considered. Both phases are thus in pressure, temperature and Gibbs free energy equilibrium.

The thermodynamic equilibrium state is determined by considering the following algebraic system:

v = 1

ρ
= Y1 v1 + Y2 v2 = cte = v0,

e = Y1e1 + Y2e2 = cte = e0,

T1 = T2 = T ,

p1 = p2 = p,

g1 = g2 (105)

where Y1 = α1ρ1
ρ and Y2 = α2ρ2

ρ = 1 − Y1 denote the mass fractions of both phases, which are not constant during the
relaxation process.

The first two equations of this system come from the mass conservation and mixture total energy conservation, respec-
tively. The last equation represents the Gibbs free energies equality (g = h − T s).

The liquid and its vapour are denoted by the subscripts “1” and “2”, respectively.
The specific volumes and the internal energies of each phase are given by the following expressions, based on the

stiffened-gas EOS (4):

vk = (γk − 1)C v,k Tk

pk + p∞,k
, (106)

ek = C v,k Tk

(
1 + (γk − 1)p∞,k

)
+ qk. (107)
p + p∞,k
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Each parameter involved in the previous expressions (γk, Cv,k, p∞,k,qk) is calculated in order to fit the liquid–vapour phase
diagram, more precisely the corresponding saturation curves. Details regarding the EOS parameters determination are given
in [35] and [2].

Denoting the final state by the superscript ‘*’, the mass conservation constraint becomes:

v0 = Y ∗
1 v∗

1

(
p∗) + Y ∗

2 v∗
2

(
p∗) = Y ∗

1 v∗
1

(
p∗) + (

1 − Y ∗
1

)
v∗

2

(
p∗), (108)

with v∗
1(p∗) = (γk−1)C v,k T ∗(p∗)

p∗+p∞,k
.

Constraints of pressures, temperatures and Gibbs free energies equilibrium have been used in relation (108). Indeed, the
Gibbs free energies equality leads to a relationship between the pressure and the temperature:

T ∗(p∗) = Tsat
(

p∗). (109)

v∗
1(p∗) and v∗

2(p∗) represent the saturated specific volumes of both phases. A first relation linking the liquid mass fraction
and the pressure is thus obtained,

Y ∗
1 = v∗

2(p∗) − v0

v∗
2(p∗) − v∗

1(p∗)
. (110)

Consider now the mixture total energy conservation,

e0 = Y ∗
1 e∗

1

(
p∗) + Y ∗

2 e∗
2

(
p∗) = Y ∗

1 e∗
1

(
p∗) + (

1 − Y ∗
1

)
e∗

2

(
p∗) (111)

with ek(p∗) = Cv,k T ∗
k (p∗)(1 + (γk−1)p∞,k

p+p∞,k
) + qk .

A second relation linking the liquid mass fraction and the pressure is thus obtained,

Y ∗
1 = e0 − e∗

2(p∗)
e∗

1(p∗) − e∗
2(p∗)

. (112)

This relation can be also expressed as a function of the specific enthalpies of the phases,

Y ∗
1 = h∗

2(p∗) − (e0 − p∗v0)

h∗
2(p∗) − h∗

1(p∗)
(113)

where h1 and h2 are linked by h∗
2(p∗) − h∗

1(p∗) = Lv(p∗), Lv(p∗) representing the latent heat of vapourization, which is a
function of the pressure.

From the previous mass fraction equations, a single function of the pressure is obtained,

h∗
2(p∗) − (e0 − p∗v0)

h∗
2(p∗) − h∗

1(p∗)
− v∗

2(p∗) − v0

v∗
2(p∗) − v∗

1(p∗)
= 0. (114)

Its solution is computed with the Newton method. Once the relaxed pressure is determined, the remaining variables are
easily computed with the preceding thermodynamic relations.
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